
The new C++ serialization library supporting backward and
forward compatibility

Michał Breiter, Robert M. Nowak

Institute of Computer Science, Warsaw University of Technology
Warsaw, Poland

ABSTRACT

We describe new programming library cereal_fwd supporting serialization (marshalling) with forward and back-
ward compatibility as well as portability between different platforms. The cereal_fwd is able to serialize arbitrary
set of C++ data structures, including variable length integer encoding, floating number support, string (text
support), deep pointer serialization and deserialization, polymorphic pointers and STL collections.

This library supports selected for its space efficiency. This article describes the proposed method, and
benchmarking test comparing this library to: Boost.Serialization, Protocol Buffers, C++ cereal .

Keywords: serialization, marshaling, binary archive, Boost.Serialization, C++ cereal, Protocol Buffers

1. INTRODUCTION

Process of converting object state into a stream of bits is serialization or marshalling. The opposite process,
called deserialization or demarschalling is reconstruction of object from series of bits. The serialization is used
to achieve persistance e.g. save object state in files, or to communicate e.g. send object through the network.

C++ standard library contains stream representation as well as conversions between a binary or a text
formats and built-in data types,1 but there is no support for more advanced constructions or portability between
platforms.

The C++ serialization library should solve following technical issues: support big-endian (e.g. MISC family)
and little-endian (e.g. Intel x86 family) processor architectures; properly serialize and deserialize pointers and
references, i.e. act also for the data pointed to; properly serialize and deserialize shared pointers, i.e. store
only one copy of data pointed and properly store recursive data structures using pointers; properly serialize
pointers for objects from class hierarchy, especially when multiple-inheritance and virtual inheritance is used;
support string serialization as well as standard collections: arrays, vectors, lists, associative memories and sets.
Additionally, C++ language does not have support for reflection i.e. inspection of classes and their fields, which
makes serialization of user defined types a challenge.

If the new version of software is created, it may be necessary to change an object’s structure. For serialization
we define two properties connecting with the object structure changes:

• backward compatibility – when the newer version of software is able to read data saved by the older version;

• forward compatibility - when the older version of software is able to read data saved by the newer version.

Backward compatibility may be achieved by storing archive version into stream or making presence of a field
optional, therefore the modules can properly serve the archive. Forward compatibility requires ability to skip
unknown fields in input data.

Some of the most popular C++ serialization libraries are:

Further author information: (Send correspondence to Robert Nowak)
Robert Nowak: E-mail: robert.nowak@elka.pw.edu.pl



• Boost.Serialization.2 This library, created in 2002, is widely used C++ serialization library that uses only
C++03 facilities to make reversible deconstruction of an arbitrary set of C++ data structures possible,
where stream of bytes could be binary data, text data and XML. The serialization can be non-intrusive,
the classes to be serialized do not need to derive from a specific base class or implement specific member
function. Boost.Serialization supports serialization of numbers, strings, deep pointer save and restore,
classes with inheritance (multiple inheritance), proper restoration of pointers to shared data and STL
containers.3 This library supports backward compatibility adding independent versioning for each class.
The drawback is lack of forward compatibility and portability between platforms for binary format.

• Protocol Buffers.4 This library uses an external description of the data structure to generate a code
to serialize and to deserialize objects. This solution was created in Google in 2001 for internal use and
published in 2008. There is support for: C++, C#, Go, Java and Python. The library support marshalling
and demarshalling of signed and unsigned integers with variable length, floating point numbers, fixed length
integers, logical values, character strings using ASCII or UTF-8, binary tables and enumerations. Protocol
Buffers is popular especially in applications exchanging information between modules developed using
different programming languages and operating on different platforms. There is full support for backward
and forward compatibility.

• C++ cereal ;5 created in 2013, similar to Boost.Serialization, but drops support for C++ standards earlier
than C++11. C++ cereal supports backward compatibility and saving into binary, XML and JSON for-
mats. There is support for deep pointer serialization, however only for std::shared_ptr, std::weak_ptr
and std::unique_ptr, the raw pointers and references are not supported. The C++ cereal can use func-
tions defined for Boost.Serialization to serialize and/or deserialize.

There is still place for new solution, because: Boost.Serialization and C++ cereal does not support forward
compatibility, Protocol Buffers library needs external description for data structure and separate tools and steps
for code generation.

2. THE cereal_fwd SERIALIZATION LIBRARY

The cereal_fwd was based on C++ cereal library,5 however a lot of the code was modified, as depicted in Tab. 1.

Language Type Files Empty Lines Comments Lines

C++ Headers

same 30 0 3425 5124
modified 10 0 3 30
added 12 396 593 2308
removed 0 0 0 0

C++ Sources

same 4 0 899 4275
modified 33 0 0 5
added 21 720 343 3269
removed 0 5 0 0

Sum

same 35 0 4349 9607
modified 45 0 3 38
added 41 1168 957 5793
removed 4 20 23 119

Table 1. Summary of changes between cereal_fwd and the base version of C++ cereal library.

The main advantage of new cereal_fwd serialization library is its forward compatibility in most common
cases including:

• adding new fields at the end of serialization code;



• depict type of serialized field as omitted, therefore this field is not deserialized in newer version of software
modules; therefore saving space.

Moreover, the binary data format used by cereal_fwd is portable between different platforms.

Library was tested on x86_64 bit Linux with: GCC 6.2.1, Clang 3.9.0, GCC 4.8.5 compilers and on x86_64
64 bit Windows with MSVC compiler. The unit tests checked correctness of new cereal_fwd features as well as
C++ cereal code. The testing coverage is summarized in Tab. 2.

Library Type Hit Total Coverage [%]

cereal_fwd Lines 2335 2483 94.0
Functions 31917 34357 92.9

C++ cereal Lines 1531 1626 94.2
Functions 17638 18404 95.8

Table 2. Unit test coverage with comparison to base version of C++ cereal library.

Apart from unit tests where data loaded was saved by same program instance, cross platform tests were
performed. For it Golden Master tests were made. Data was first saved to files on all testing platforms.
Then on each platform when tests are run data saved earlier on other platforms is read. Apart from checking
incompatibilities between platforms, this kind of tests can help verify that changes made to library don’t break
compatibility with older versions. These tests were run additionally on 32-bit MIPS big endian platform.

3. BENCHMARIKING
There is no one established method to compare performance of different serialization mechanisms. In other works
usage of various testing data can be found. Queirós6 focused on comparing libraries using JSON format, real
data containing weather forecast was used. Sumaray and Makki7 designed two types representing book and film
data specially for conducting tests. Unfortunately generation of fields values was not described. Gligoric et al.8
proposed fast deserialization method based on code generation for Java. Comparison with serialization from
Java Class Library was made using types created specially for this test but also with objects captured during
test executions from selected open source projects.

3.1 Benchmarks
Implemented cereal_fwd solution was compared with Boost.Serialization, C++ cereal and Protocol Buffers. The
compared parameters were: time taken to serialize and deserialize data, size of saved data, allocated dynamic
memory and size of compiled application. The binary archives were compared, because of their speed.

Time taken to serialize data was measured using Google Benchmark library.9 Library allows easy mea-
surement of execution time for specified fragments of code. Tests can be parameterized using set of argu-
ments. Results can be outputted to JSON and CSV format. Time is measured using high precision clock
std::chrono::high_resolution_clock. To obtain reliable results specified code fragment is run many times.
The values showed are the mean time of all executions. Number of iterations is determined dynamically based
on results from trial run.

Size of serialized data may be important for mobile and embedded applications, where available memory and
storage space is limited. It may also be crucial for data transferred by mobile or low quality networks. Measured
value was total size of serialized data. For tests using random values presented is mean value. Protocol Buffers
add external data description, C++ cereal and Boost.Serialization do not add any metadata.

For tests we used random values of fields, apart from running many iterations by Google Benchmark. Pre-
sented results are mean values from these runs.

Usage of memory allocated on heap was measured using two values. Total number of allocations was measured
counting total number of calls to malloc, calloc and realloc function. Second value was maximal size of heap
during each test execution. To capture memory usage memusage tool from GNU C Library project10 was used.
This tool runs specified program and changes memory management library to it’s own one — libmemusage.so.



Library tracks all calls to malloc, calloc, realloc and free functions and collects data from them. After
program finishes it displays, among others, maximal heap size and number of calls to each function.

For conducted tests it was decided to use several types which have possibly different characteristics from each
other and should be made of few other types. This choice should allow evaluation of many independent parts of
serialization mechanisms.

3.1.1 Numbers serialization

Primitive types were tested with two categories of tests: saving many fields of same type in class and saving
them in collections. Distinction was made because tested libraries have different logic for processing primitive
types in objects and arrays. For first category of test class IntegerClass with 10 field of std::int32_t type
was used. Using many field should lower influence of overhead needed to save class information. Using to many
field could have negative influence on mechanisms having optimizations for classes with relatively low number of
fields.

IntegerClass was saved as a single object and as a element in array inside IntegerClassVect class. For
single object case two tests with different value characteristics were performed. First, values were randomized
with uniform distribution on whole range of std::int32_t type. Next, values were randomized with uniform
normal distribution with mean value of 0 and standard deviation of 127. 127 was chosen because it’s maximal
value which can be represented using one byte for signed numbers. This distribution should simulate usage of
default values and enumeration types. Tests with arrays were performed with different number of elements: 8,
64, 512 and 4096. Every test was repeated 100 times for new random numbers.

Operation Archive Time [%] Heap [kB] [%] Aloc. [%]

read

boost 1556 100 154 100 3.87k 100
cereal 464 30 152 99 3.37k 87
this 490 31 152 99 3.17k 82
proto 433 28 151 98 3.27k 85

write

boost 1371 100 150 100 4.26k 100
cereal 233 17 148 98 3.16k 74
this 870 63 149 99 2.96k 70
proto 253 18 147 98 2.96k 69

Table 3. Benchmark for Boost.Serialization, C++ cereal , Protocol Buffers and cereal_fwd (called this) for reading and
writing IntegerClass objects.

Operation Archive Time [%] Heap [kB] [%] Aloc. [%]

read

boost 1366 100 150 100 4.26k 100
cereal 234 17 148 98 3.16k 74
this 847 62 150 99 2.96k 69
proto 222 16 147 98 2.96k 69

write

boost 1556 100 154 100 3.87k 100
cereal 468 30 152 99 3.37k 87
this 407 26 153 99 3.17k 82
proto 370 24 151 98 3.27k 85

Table 4. Benchmark for Boost.Serialization, C++ cereal , Protocol Buffers and cereal_fwd (called this) for reading and
writing IntegerClass object storing one byte numbers.

Build-in numbers were also saved directly in collections, std::int32_t and float types were saved to
std::vector, additionally std::map with keys and values of type std::int32_t was tested.

Handling for map like types may be different from arrays because it’s not possible to accesses continuous
memory of whole container. Values were drawn randomly using uniform distribution on whole std::int32_t



and float range. Tests were made with containers of different sizes: 8, 64, 512, 4096 and 8192, each test was
repeated 10 times for new random numbers.

The rank of libraries in term of size, heap and allocation numbers for all collection were similar, therefore it
is not included into text.

Operation Archive Array size Time [%] Heap [kB] [%] Aloc. [%]

read

boost
8 2305 100 151 100 5.06k 100

512 48411 100 211 100 5.66k 100
4096 375163 100 699 100 5.96k 100

cereal
8 987 43 148 99 3.56k 70

512 49284 102 207 98 4.16k 74
4096 387411 103 694 99 4.46k 75

this
8 3194 139 150 99 3.16k 62

512 174979 361 209 99 3.76k 66
4096 1395860 372 696 100 4.06k 68

proto
8 1698 74 148 98 5.16k 102

512 84198 174 251 119 107.76k 1905
4096 660874 176 997 143 825.46k 13857

write

boost
8 2924 100 154 100 4.27k 100

512 83561 100 168 100 4.27k 100
4096 653808 100 311 100 4.27k 100

cereal
8 1816 62 152 99 3.67k 86

512 90864 109 164 98 3.67k 86
4096 725390 111 307 99 3.67k 86

this
8 2434 83 153 99 3.37k 79

512 137895 165 165 98 3.37k 79
4096 1102520 169 308 99 3.37k 79

proto
8 1984 068 152 99 4.47k 105

512 115557 138 209 124 55.47k 1300
4096 932303 143 610 196 414.17k 9706

Table 5. Benchmark for Boost.Serialization, C++ cereal , Protocol Buffers and cereal_fwd (called this) for reading and
writing arrays of IntegerClass objects.

3.1.2 Pointer reading and writing time comparison

Support for pointers was also tested. In first test non-shared std::unique_ptr pointers were used. Generated
were full tree of N levels. Every node had two pointers, to left and right subtree. Only leafs had empty pointers.
In shared pointers test each node had two std::shared_ptr pointers to its children and one std::weak_ptr pointer
to parent node. Generated was also full tree of N levels. In polymorphic pointer test similar data structure was
used. For each level of the tree different derived class was used. Type of class depended on level of tree and was
used as parameter for templated class NodeP<N>. Number of different types used for this tests was directly
proportional to height of the tree. Because Protocol Buffers library doesn’t support pointers or references it
wasn’t used for pointer tests.

The pointer serialize and deserialize comparison for are depicted in Tab. 6. The deep pointer serialization
and deserialization were tested for different pointer types.

3.2 Executable code comparison size
For this test special applications containing minimal logic for reading and writing object to file were created.
Single application used only one serialization mechanism. Compared were size of output application which used
dynamic version of tested libraries. Protocol Buffers requires separate schema definition of composed types for
which serialization and deserialization should be supported. Rest of tested libraries store and load native types



Tree unique pointer polymorphic pointer shared pointer
Operation Archive level Time Heap Alloc. Time Heap Alloc. Time Heap Alloc.

[kB] [kB] [kB]

write

boost

0 1523 114 2.34k 1532 114 3.39k 1553 114 2.35k
1 1930 114 2.35k 1914 114 3.40k 2039 114 2.35k
5 10541 114 2.44k 21200 114 3.52k 16933 114 2.44k
9 157293 148 3.88k 386860 192 5.45k 273995 173 3.88k

cereal

0 312 114 2.34k 326 114 3.39k 322 114 2.34k
1 432 114 2.34k 456 114 3.39k 573 114 2.34k
5 1704 114 2.37k 7260 114 3.44k 5980 114 2.41k
9 22416 114 2.85k 100703 122 3.93k 108032 145 3.37k

this

0 261 114 2.34k 236 114 3.39k 254 114 2.34k
1 378 114 2.34k 336 114 3.39k 464 114 2.34k
5 2797 114 2.37k 7923 114 3.43k 7033 114 2.40k
9 41630 114 2.85k 115511 121 3.92k 129773 145 3.37k

read

boost

0 1505 114 2.35k 1556 114 3.40k 1605 114 2.35k
1 1921 114 2.35k 1735 114 3.40k 2212 114 2.36k
5 7244 114 2.48k 14623 114 3.57k 18382 114 2.55k
9 92599 160 4.41k 179874 200 5.99k 322077 181 5.44k

cereal

0 160 114 2.33k 179 114 3.38k 157 114 2.34k
1 326 114 2.34k 324 114 3.39k 429 114 2.35k
5 2117 114 2.40k 7595 114 3.48k 7304 114 2.50k
9 31642 114 3.36k 114985 134 4.46k 143173 161 4.91k

this

0 583 114 2.33k 599 114 3.38k 629 114 2.33k
1 842 114 2.34k 755 114 3.38k 1004 114 2.34k
5 4087 114 2.40k 10439 114 3.46k 12346 114 2.50k
9 59479 114 3.36k 158190 134 4.44k 218045 162 4.91k

Table 6. Comparison of deep pointers serialization and deserialization for different pointer types

directly. For each test case, types equivalent to native ones were written in Protocol Buffers format and used
to generate supporting code. In save tests, data was copied from native to generated types. In load tests data
was loaded to generated types and copied to native ones. Copying data between generated and native types and
creation of objects from both types was included in measured time and memory usage. This approach simulated
usage where generated types are used only during serialization and deserialization process.

Test suite Size [kB]
boost cereal this proto

IntegerClass, IntegerClassVect 90.86 54.70 94.79 54.80
Maps 70.88 34.66 94.80 107.01
Arrays 74.88 38.64 94.79 54.82
Unique pointers 126.79 70.49 82.60
Polymorphic pointers 110.82 74.56 94.66
Shared pointers 134.83 58.50 90.61

Table 7. Size of generated application for compared libraries. Pointers are not supported by Protocol Buffers.

The code sizes of resultant applications are depicted in Tab 7. Protocol Buffers obtained the lowest sizes,
except in the case of an associative array. The code for our solution, as expected, results in creation larger
application than the base C++ cereal archive. It is caused by extended read and write logic.



4. DISCUSSION

Manual creation of code to marshal and demarshal objects is liable to make mistakes and be time-consuming.
The new cereal_fwd library allows C++ programmer to serialize and deserialize objects supporting forward
and backward compatibility. This library is header only, therefore is easy to integrate. Additionally cereal_fwd
supports portability between platforms.

The more materials is available in the project repository https://github.com/breiker/cereal_fwd, where
we provide examples of use and source codes as well as all benchmark results.

Future versions of C++ standard may bring (improvements) enhancements which will help improve or make
new serialization libraries. Implementation of Reflection Specification11 may make it possible to support seri-
alization of user defined types without developer having to manually add code describing fields that need to
be saved. Metaclasses proposal12 may enable generation of serialization code without need for separate tools,
during compilation of program.

Acknowledgements

This work was supported by Statutory Founds of Institute of Computer Science.

REFERENCES
1. R. Nowak and A. Pająk, Język C++: mechanizmy, wzorce, biblioteki [C++ Language: mechanisms, design

patterns, libraries], BTC, Legionowo, 2010. ISBN 978-83-60233-66-5, http://www.btc.pl/index.php?
productID=177835.

2. Boost Community, “Boost.Serialization.” https://www.boost.org. accessed 2019-04-15.
3. R. Nowak, “Zapisywanie stanu obiektów. biblioteka boost::serialization,” Software Developer’s Journal (202),

pp. 4 – 13, 2011. https://depot.ceon.pl/handle/123456789/3163.
4. Google Inc., “Protocol Buffers – Google’s data interchange format.” https://github.com/

protocolbuffers/protobuf. accessed 2019-03-24.
5. W. S. Grant and R. Voorhies, “cereal — A C++11 library for serialization..” http://uscilab.github.io/

cereal/. accessed 2019-02-15.
6. R. Queirós, “JSON on Mobile: is there an efficient parser?,” in Symposium on Languages, Applications and

Technologies (SLATE), 3rd, pp. 93–100, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014.
7. A. Sumaray and S. K. Makki, “A comparison of data serialization formats for optimal efficiency on a mobile

platform,” in Proceedings of the 6th international conference on ubiquitous information management and
communication, p. 48, ACM, 2012.

8. M. Gligoric, D. Marinov, and S. Kamin, “Codese: Fast deserialization via code generation,” in Proceedings
of the 2011 International Symposium on Software Testing and Analysis, ISSTA ’11, pp. 298–308, ACM,
(New York, NY, USA), 2011.

9. “benchmark — A microbenchmark support library.” https://github.com/google/benchmark. accessed
26.06.2017.

10. “memusage - profile memory usage of a program.” http://man7.org/linux/man-pages/man1/memusage.
1.html. accessed 2018-06-26.

11. D. Sankel, “Working draft, c++ extensions for reflection.” http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2018/n4766.pdf, 2018.

12. H. Sutter, “Metaclasses: Generative c++.” http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2018/p0707r3.pdf, 2018.


