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ABSTRACT

The paper describes three implementations of DMA engines created for different data acquisition (DAQ) systems. The

designs are based on vendor (Xilinx) provided IP cores. The emphasis is put on typical problems related to the implemen-

tation of high-performance data acquisition systems. The selection or building of proper DMA cores is shown, and typical

problems associated with the realization of the device driver are described. Sources of the described systems are publically

available.
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1. INTRODUCTION

To achieve flexible interfacing to different Front-End Electronics (FEE) systems, Field-Programmable Array (FPGA) chips

are often used in the input stages of the DAQ. However, if the acquired data must be submitted to any complex processing,

a computer system is needed as the next stage of the DAQ. In fact, there is a tendency in modern data acquisition systems

to involve computers as near to the input as possible, to minimize the usage of high-cost specialized components. Good

examples of this approach may be the proposed upgrades of DAQ in LHCb1 and ATLAS2 detectors in the LHC experiment

at CERN, and last proposals for the readout chain in the CBM experiment.3 This paper assumes that the DAQ computer

system runs under control of the Linux OS.

To preserve the computational power of the CPU for processing of data, it is desirable that the data be delivered from

the FPGA logic to the memory of the computer using the Direct Memory Access (DMA).

Usually, the DMA system must be adjusted to the specific needs of the created data acquisition system. With FPGAs,

there is a huge number of solutions to choose from. There are many open source solutions for different FPGA families and

for different busses. Just a few examples may be found in [4–7]. The FPGA vendors also provide DMA IP cores for their

chips. They are usually well matched to the particular FPGA family, well integrated with the vendor’s synthesis tools, but

may be not portable to other FPGAs. This paper presents three DMA engine solutions based on Xilinx provided IP cores,

to show how the specific features of the DAQ influenced the chosen DMA architecture both in the firmware and in the

software layers, and to show typical problems and their solutions.

2. THE DMA SYSTEM FOR PCIE CONNECTED FPGA WITH EXTERNAL DDR MEMORY

In the data acquisition system,8 the acquired data were transferred by the user logic to the external DDR memory connected

to the AXI DDR Memory controller. The FPGA and the memory were located on the PCIe board. The DMA core was

responsible for the transfer from the FPGA-connected DDR memory to the memory in the PC computer. This mode of

operation may be well suited for situations, where the data stream exhibits huge fluctuations, and the DDR memory may

be used to temporarily buffer the huge amount of data, which later on may be transferred to the PC via DMA. The block

diagram of the DAQ architecture is shown in Fig. 1

2.1 The firmware

The first tests of the DMA system were performed in the KC705 board9 and the final tests on a dedicated board equipped

with Artix-7 XC7A200T FPGA. As the DMA core, the AXI Central DMA controller10 was used. As the PCI endpoint, the

AXI Memory Mapped to PCI Express Gen2 (AXI MM PCIe) block11 was used. The preparation of the firmware part was

easy and required only the connecting and configuration of IP cores in the Vivado12 Block Design Editor.
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Figure 1: The architecture of the DAQ system with data buffered with shared DDR memory.

2.2 The software

The DMA core was controlled by the dedicated Linux device driver. The DMA buffer was allocated during the initialization

of the driver and was later mapped into the memory of the user-space application. That provided direct access to the

transferred data. The DMA did not have to work continuously. Consecutive chunks of data were transferred and processed

by the user space application. The sources of the design are available on the Xilinx forum.13

3. DMA SYSTEM FOR AXI4-STREAM BASED DAQ

The second DMA system was created for the acquisition of data from the video encoder.14 In this case, both the data

source and the computer system were located in the same System on Chip (SoC) on the Xilinx ZCU-102 board.15 The

architecture of the system is shown in Fig. 2

Figure 2: The architecture of the AXI4-Stream based DAQ.

3.1 The firmware

In that system the video data was delivered by the AXI4-Stream interface. Each frame was delivered in a separate AXI4-

Stream packet. Because the data was compressed, the frames had different lengths. The first idea was to use the AXI

DMA controller.16 It allows DMA transfer from the AXI4-Stream source to the memory-mapped destination. It offers the



scatter-gather (SG) support, that is important for big DMA buffers. It also supports the cyclic DMA mode, that is essential

for the continuous data acquisition needed for smooth and stable video streaming. Reception of variable-length packets

required to prepare buffers with the size equal to the maximum possible packet length. The transfer to the particular buffer

was completed when the TLAST signal was asserted in the AXI4-Stream interface. Unfortunately it appeared that the

standard Linux driver does not correctly report the real length of the transferred packet.17 The analysis of the problem

has shown, that the problem may be difficult to solve because the register with the real length of the transfer is quickly

overwritten with the length of the next transfer. Therefore, another architecture was considered.

The second solution utilized the AXI Data Mover18 block, which offers similar functionality like the AXI DMA Con-

troller, but is controlled by the commands transmitted by the "Command" AXI4-Stream interface, and reports the statuses

of completed transfers via the "Status" AXI4-Stream interface. To interface those AXI4-Stream interfaces with the CPU

AXI bus, the AXI Streaming FIFO19 IP core is used. However, the length of the commands used by the AXI Data Mover is

72 bits, while the AXI Streaming FIFO uses 32-bit long words. Therefore an additional AXI4-Stream Interconnect block

was necessary to connect those components. The block diagram of the whole DMA engine is shown in Fig.3.

3.2 The software

The dedicated Linux device driver creates the DMA buffers for the configurable number of video frames. For each buffer,

the transfer command is prepared, and all transfer commands are stored in the array. When the user-space application opens

the device and starts the data acquisition, the transfer commands are written to the "commands" FIFO, until the FIFO is

full or all commands are written. After the buffer is transferred, the corresponding status packet is written to the "status"

FIFO, and the FIFO generates an interrupt. The driver reads the status packets and updates the information about the data

available in the corresponding data buffer. The user-space application usually sleeps waiting for the new data and is woken

up after the new buffer is filled. When the data processing is finished, the application confirms that and the corresponding

transfer command is written again to the "command" FIFO, or put at the end of the list of the commands waiting for the

place in the "command" FIFO. The described mechanism warrants that the "overrun" error (filling the buffer with new data

before the previous content was processed) will never occur. The DMA buffers are mapped into the application’s memory

allowing zero-copy access to the data. The communication between the user-space application and the driver is performed

via ioctl calls:

• ADM_START - Starts the data acquisition.

• ADM_STOP - Stops the data acquisition.

• ADM_GET - Return the number of the next available buffer with the new video frame. If no buffer is available yet,

puts the application to sleep.

• ADM_CONFIRM - Confirms that the buffer was processed

• ADM_RESET - This command resets the AXI Data Mover and AXI Streaming FIFO. It is necessary before the new

data acquisition is started to ensure that no stale commands from the previous, possibly interrupted transmission are

stored in those blocks.

The ADM_GET and ADM_CONFIRM ioctls ensure the appropriate synchronization of the access to the DMA buffers.

The sources of both versions of the described DMA systems in a reduced 32-bit version for Zynq 7000 SoCs are

publically available on [20] in directories "axi_dma_prj1" and "axi_dma_prj2" as VEXTPROJ21 compatible projects.

4. DMA SYSTEM WORKING AS A PCIE BRIDGE FOR AXI4-STREAM SOURCE

The third DMA system was created, when the system described in section 2 was modified for continuous acquisition of

data and providing the real-time feedback.22 In the continuous acquisition mode, if the DDR memory should be used for

data buffering, the memory bandwidth must be equal to the maximum input data bandwidth (to accommodate input rate

fluctuations) plus the output data bandwidth. In the Artix-7 based system it was not possible to fulfill those requirements,

and therefore another data flow had to be used. The measurement data are not stored into the DDR memory, but are

delivered via the AXI4-Stream interface directly to the DMA engine and further via PCIe bus to the memory of the
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Figure 3: The block diagram of the DMA engine based on AXI Data Mover and AXI Streaming FIFO. The AXI4-Stream

Interconnect IP core is used to convert a sequence of 32-bit words from the FIFO into 72-bit commands used by the AXI

Data Mover.



computer. The input rate fluctuations must be handled by the internal block RAM resources, used by the AXI FIFO. Not

implementing the DDR controller (in Artix 7 chip it was implemented in programmable logic) frees resources needed for

preprocessing of data. The block diagram of the DMA system is shown in Fig. 4.

Figure 4: The architecture of the DAQ system with the DMA working as a PCIe bridge for the AXI4-Stream source.

4.1 The firmware

The first attempts to create the DMA core were based on the system described in section 3. The only difference was the

addition of the AXI Memory Mapped to PCI Express Gen2 (AXI MM PCIe) block11 as the bridge between the AXI and

the PCIe busses. Unfortunately, it appeared that the AXI MM PCIe block does not support 64-bit addressing in its AXI

Slave bridge, which was necessary to support data buffers with capacity above 4 GB in the computer memory.

The next proposed DMA system was based on the new DMA for PCI Express Subsystem (DMA for PCIe),23 introduced

first in the Vivado 2016.4. That IP core supports access to the whole 64-bit address space at the PCIe side. It also allows

direct connection of the AXI4-Stream interface to the DMA engine simplifying the design. The use of the IP core itself in

the firmware design was very simple and required only configuration of the core via GUI in the Vivado Block Designer.

However, implementation of the software layer was much more complex.

4.2 The software

The DMA for PCIe (XDMA) core is so complex that it was necessary to use the xdma driver provided by Xilinx.24

However, it appeared, that the driver and accompanying software are mainly oriented on the demonstration of the function-

alities of the core, not on the continuous high-speed data acquisition. For example, the original driver supported the cyclical

transfer only via read and write functions of the corresponding character device, which made continuous data acquisition

impossible. Therefore, the modified version of the driver has been created in [25], in the directory "v2_xdma/software".

The implemented mechanisms for the communication with the user-space application is similar like in the system described

in section 3. The ioctl function is used to control the data acquisition, to wait for availability of the data and to confirm

processing of the data. However, there also some significant differences.

The DMA for PCIe core supports the scatter-gather mode via the list of transfer descriptors located in the memory.

If the list is circularly linked, it is possible to implement the continuous data transfer. Unfortunately, the DMA for PCIe

used in so implemented continuous mode does not implement any protection against the “overrun” error. If the application

does not process the delivered data quickly enough, the data will be silently overwritten by the next transfer using the same

descriptor. It is even possible that data are overwritten during the processing, which may result in an attempt to process

corrupted data, and cause errors in the user-space application. That problem was worked around using the mechanism of

“metadata writeback” used by the DMA for PCIe core to report the status of the transfer. It is possible to set the writeback

address in the descriptor to the address of the descriptor itself.26 In such situation, the descriptor can not be reused until it

is rewritten with its original content. Otherwise, the core detects the incorrect descriptor’s header and stops the transfer.

In the DMA system described in section 3 it was possible to use buffers bigger than the maximum expected size of

the video frame. In that DMA system, the maximum length of packets with the detector data may be very huge, and their

size may vary significantly. Even for the maximum reasonable size of a single DMA buffer of 4 MB, it is required, that a

single packet may span across a few consecutive buffers. To handle that, the description of data in circular buffer had to be

changed. Now the position of the packet is described with:



1. Number of the first buffer

2. Number of the last buffer

3. Number of words in the last buffer

Figure 5: The mapping of the DMA buffers with the “overlap” area ensuring, that each packet may be accessed as a

continuous object in the memory.

That change significantly affected the mapping of the memory. It is not possible to map each buffer independently. To

allow easy processing of data, each packet spread across a few consecutive buffers should be visible as a continuous object

in the virtual memory of the application. Therefore it was necessary to perform the mapping using the vm_fault handler.

The system is prepared for working with huge buffers. A typical setup uses 1024 or even 2048 of 4 MB buffers (4 GB

or 8 GB of memory). As the buffers are accessed only by the DMA and by the user-space application, it is not necessary

to create the kernel-space mapping for buffers. That also can be achieved by mapping in the vm_fault handler. There is

still one situation when the packet may be not continuous. That happens at the end of the buffer. There are two possible

solutions. If the length of the buffer is equal to the power of two, the modular arithmetics can be performed on the word

indices to transparently handle the wrapping of the object. However, if the processing of the data involves library functions,

that require the processed data to be strictly continuous in the memory, it is possible to create an “overlap mapping”. If the

number of buffers required to store the biggest packet is equal to N, then N −1 initial buffers must be additionally mapped

at the end of the virtual area (see Fig. 5).

The sources of the system are available in [25] as a VEXTPROJ21 compatible project.

5. RESULTS

The CDMA based DMA system described in section 2 was tested with the simulated data. The achieved throughput was

equal to 10.45 Gb/s for transfer from the FPGA connected DDR to the PC memory, and 8.05 Gb/s for transfer from the PC



memory to the FPGA connected DDR.

The DMA system described in section 3 was tested both with simulated data and with the real encoder. Tests with

the simulated data have shown that even with packets slightly below 4 MB long at 60 packets/s rate, the CPU usage was

negligible (below 1%).

The XDMA based DMA system described in section 4 was tested with the simulated data, and the achieved throughput

via 4 lanes PCIe Gen 2 interface was equal to 14.2 Gb/s (ca. 89% of the theoretical throughput).

All DMA systems provided reliable, error-free data transmission during the long-time tests.

6. CONCLUSIONS

The presented DMA systems are adjusted to different architectures of the data acquisition systems and different require-

ments. The simplest version performs DMA transfers on request from the data-processing application. Therefore there are

no problems related to cyclic mode, possible overruns, and synchronization between the DMA and the processing threads.

The third solution is the high-performance system able to almost fully utilize the bandwidth of the PCIe bus delivering

the continuous stream of data for a long time. It also demonstrates possibilities to work around deficiencies of the IP core

design. All presented DMA systems have been successfully synthesized, implemented and tested. They may be reused

in different DAQ systems - both based on SoC chips using only the AXI bus, and in PCIe-based systems with the PCIe

endpoint blocks. The presented solutions are based on Xilinx provided IP cores. However, similar blocks are available

also for FPGA or SoC chips from other vendors. The described techniques used in the Linux kernel drivers should also be

portable to other hardware platforms.
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