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ABSTRACT

This document presents a proposal of a new architecture for implementation of Digital Signal Processing (DSP)
algorithms in Field-Programmable Gate Array (FPGA). The proposed approach uses the dual port memory for
fast exchange of information between the processing units implemented in the FPGA. The special, parametrized
scheme of interconnections between processing units has been also proposed, which allows to synthesize DSP
system with customized number of processing units. The proposed interconnections scheme provides possibility to
quickly transfer the data between processing units, at reasonable consumption of routing resources. The proposed
architecture has been tested in simulations, and synthesized for real FPGA chips to verify its correctness.
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1. INTRODUCTION

The FPGA chips allow to build flexible, custom designed, digital systems well suited for parallel processing
of data. Possibility of tight integration with different I/O units, using different parallel and serial interfaces
makes them very attractive for measurement and data acquisition or control systems. Additionally modern
families of FPGA chips offer resources dedicated for Digital Signal Processing (DSP) applications like hardware
multipliers or even more complex multiply-and-accumulate blocks.1,2 There are also many synthesizable IP cores
(both commercial and free/open source3) and libraries (e.g. libhdlfltp4) which facilitate implementation of DSP
algorithms. Also the new VHDL-2008 standard5 significantly simplifies performing of arithmetic calculations in
FPGA (even though currently available synthesis tools do not provide efficient implementation for floating point
operations defined in this standard).

Using the described resources, it is relatively easy to implement in the FPGA chip some DSP processing
units (PU), able to operate in parallel. However, even when appropriate processing units are available, another
significant problem still exists - how to assure the efficient data transfer between different processing units, and
between each processing unit and storage elements.

This paper discusses a possibility of building of an architecture, which combines good performance with
flexibility and reasonable consumption of routing resources.

2. PROPOSAL OF THE ARCHITECTURE

2.1 Possible architectures used for DSP in FPGA

In many applications simple pipelined data-path architecture may be used for DSP algorithms. This approach
is well supported with tools like Xilinx System Generator6 or Altera DSP Builder.7 Our team has used this
approach when implementing a simple, introductory version of RF control system for an accelerator cavity.8 A
part of this system performing so called ”Matrix Rotation”, implemented in Xilinx System Generator is shown
in the Fig.1.

However the above method is not suitable for more complex problems, in which the same arithmetical block
should be used for different purposes in consecutive steps of the algorithm. In this approach, we need some
processing units controlled by the state machines, which control the data flow between those units and storage



2

Q_Out

1

I_Out

xlshiftX >> 0 

Shift5

xlshiftX >> 0 

Shift4

xlshiftX >> 18 

Shift3

xlshiftX >> 18 

Shift2

xlshiftX >> 18 

Shift1

xlshiftX >> 18 

Shift

xlmult

z
−2

a

b
(ab)

Mult3

xlmult

z
−2

a

b
(ab)

Mult2

xlmult

z
−2

a

b
(ab)

Mult1

xlmult

z
−2

a

b
(ab)

Mult

xladdsub

z
−1
a+b

a

b

AddSub1

xladdsub

z
−1

a−b
a

b

AddSub

4

sinPhi_K

3

cosPhi_K

2

Q_In

1

I_In

Figure 1. Part of the RF control system, performing the ”Matrix Rotation” operation, implemented in pipelined datapath
architecture using the Xilinx System Generator. After every clock pulse the new result is presented on the output, however
the processing latency is higher, and depend on the number of pipeline registers built into the pipeline (Figure cited from
Ref.8).
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Figure 2. The architecture for implementation of DSP algorithms in FPGA based on state machine, controlling processing
units and the data flow.
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Figure 3. The flexible architecture for DSP in FPGA with multiple processing units sharing the same code memory and
data memory.

elements as shown in the Fig.2. An example of such approach was an accelerator’s cavity simulator developed
by our team.9 This system had to solve differential state equations, which required a sequential algorithm.

In this system registers have been used to store the numerical data between calculations. This assured easy
simultaneous access to multiple arguments needed by the processing units, but resulted in high routing resources
consumption. This consumption was reduced by hard-coding of the algorithm which allowed the synthesis tools
to remove in the optimization phase all connections not used by the particular algorithm. Such optimization
is not possible in fully programmable systems, so another architecture is needed. Use of registers (synthesized
from flip-flops) is also not acceptable if more storage space is needed.

If we need more storage, we have to use the memory for processed data. Use of memory to store the code
controlling the processing units instead of state machine with hard-coded algorithm may be also advantageous,
as it provides programmability and allows to build very flexible system.

However in such approach we simply imitate the structure of the multicore DSP processor,10 so it is unlikely to
obtain better results with a programmable FPGA chip, than with the dedicated, carefully tuned DSP processor
chip. Additionally sharing of memory between multiple units requires a complex bus arbitration which would
dramatically impair the performance of that system. The simplest way to improve this architecture is to provide
a separate code memory for each processing unit. The similar separation of the data memories is however not
possible if we want to use the data memory to exchange data between processing units. Therefore the shared
data memory bus is a real bottleneck in this architecture.

To overcome this limitation another mechanism is needed providing reasonable storage capacity, and allowing
efficient exchange of information - namely the dual port memory.

2.2 Use of dual port memory for DSP in FPGA

Modern FPGA chips provide multiple dual port RAM memory blocks (DPRAM). High end chips may contain
even more than 2000 DPRAM blocks with capacity of 20 kbits (Altera Stratix V11) or more than 2100 DPRAM
blocks with capacity of 18 kbits (Xilinx Virtex-612). Even low end devices from cheap families offer 46 blocks
with capacity of 9 kbits (Altera Cyclone III EP3C513) or 12 blocks with capacity of 18 kbits (Xilinx Spartan 6
XC6SLX414). The DPRAM allows almost independent access from two buses (Figure 4). The only conflicting
situation arises when both ports are trying to write new contents to the same address. In some implementations
also simultaneous read and write accesses to the same address should be avoided. Even with the mentioned
limitations the DPRAM block may be a very efficient way to exchange information between two systems.15

They are often used to implement FIFOs allowing to transmit data between different clock domains. In the
proposed architecture DPRAM blocks are used to create the data storage shared by two neighboring processing
units. In this way we avoid building a global shared data memory and bypass problems associated with necessity
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Figure 4. The flexible architecture for DSP in FPGA with multiple processing units sharing the same code memory and
data memory.
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Figure 5. Basic cell in the DSP in FPGA architecture based on a DPRAM blocks used for exchange of information.

of access arbitration. Only very simple handshake is needed to avoid the mentioned problem with simultaneous
write access, and this handshake may be easily integrated with the synchronization interface which is anyway
needed in a system consisting of multiple processing units operating in parallel. This synchronization interface
contains a few unidirectional lines in both directions. Each unit may set its synchronization outputs to notify
its neighbor about events associated with data processing, and may check its synchronization inputs to receive
notifications from its neighbor.

One DPRAM memory is used to connect each processing unit with the “programming interface” used to
load programs performed by processing units, and data or coefficients used in calculations. To perform these
tasks, this memory is divided into two areas - the first one used to store the code, and the second - allocated
for data transmitted to the DSP system by the programming interface and received from the DSP system by
the programming interface. Of course the main stream of data in the real DSP system should be transmitted
through faster interfaces. To achieve that some processing units should be integrated with the high speed I/O
interfaces like RocketIO16 or GXB17 The “programming interface” provides also access to internal registers in
processing units, needed to control each unit and to check its status.

The proposed basic cell of the DSP system built in the FPGA is shown in the Fig.5

2.3 Interconnections between processing units

Another problem to be solved is the topology of interconnections between the processing units. In the simplest
approach, shown in the Fig.6 the processing units are organized in a chain. Each processing unit has three
memory interfaces - one connected to the programming interface (through the CODE/DATA DPRAM), and
two connected to its neighbors. To allow quicker propagation of information through the chain, the 4th memory
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Figure 6. Simple layout of interconnections between processing units - a single chain.
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interface has been added, which allows to create ”bypass connections”, as shown in the Fig.7. With four memory
interfaces each processing unit may in a single clock cycle - read the instruction from the code memory, read two
arguments from 2 shared data DPRAMs and write the result of the previous operation into the 3rd shared data
DPRAM. The above interconnection scheme may be easily described with the following rules:

• If N is the number of processing units, and N is an even integer number not less than 6

• If the processing units are numbered from 0 to N − 1

• The k-th unit should be connected via the bypass connection to the j-th unit, where j is calculated as
follows:

– for even k: j = (k + 3)modN

– for odd k: k = (k − 3)modN

The above description allows to write the synthesizable VHDL code with parametrized number of processing
units, and to easily experiment with systems containing different amount of processing units.

3. IMPLEMENTATION

The proposed architecture has been implemented in the VHDL language. For first ”proof of the concept”
implementation very simple processing units with limited functionalities have been used. The instructions were
32-bits long and worked with the data treated as 32-bit fixed point integers. Only basic operations like addition,
subtraction, multiplication, shifting, and logical operators have been implemented. To allow implementation of
more complex algorithms, also the loops, comparisons, jumps and conditional branches have been added. Each
processing unit was also equipped with a small 16-level stack, which allowed to implement procedures.



Table 1. Results of synthesis of DSP system with 6 processing units in Virtex-4 xc4vlx15-12 chip.

Device Utilization Summary

Number of BUFGs 2 out of 32 6%

Number of DSP48s 24 out of 32 75%

Number of External IOBs 68 out of 240 28%

Number of LOCed IOBs 0 out of 68 0%

Number of RAMB16s 48 out of 48 100%

Number of Slices 6142 out of 6144 99%

Number of SLICEMs 0 out of 3072 0%

Speed parameters
Maximum clock frequency 66.6MHz

Table 2. Results of synthesis of DSP system with 6 processing units in Virtex-4 xc4vlx25-12 chip.

Device Utilization Summary

Number of BUFGs 2 out of 32 6%

Number of DSP48s 24 out of 48 50%

Number of External IOBs 68 out of 240 28%

Number of LOCed IOBs 0 out of 68 0%

Number of RAMB16s 72 out of 72 100%

Number of Slices 6743 out of 10752 62%

Number of SLICEMs 0 out of 5376 0%

Speed parameters
Maximum clock frequency 68.49MHz

To allow synchronization between different processing units, simple instructions like setting, clearing and
testing of individual bits in the synchronization interface have been provided.

Each processing unit was equipped with registers allowing to control and monitor its state. Also some global
registers have been added allowing to detect whether any processing unit signals the processing error, and to
start or stop all processing units simultaneously.

4. TESTS AND RESULTS

The proposed architecture has been tested in a dedicated hardware-software co-simulation environment using
the GHDL simulator and Python language. This environment allowed to emulate the VME-like programming
interface for the simulated DSP system. The tests have proved correct operation of the simulated DSP system.

The proposed architecture has been also synthesized with Xilinx ISE toolset for different chips from Virtex-4
family, however no tests in real hardware have been performed yet. To check scalability of the proposed solution
two versions of the DSP system have been synthesized: the first one with 6 processing units, and the second
one with 12 processing units. Each version was synthesized for the smallest chip which was able to contain the
system, and then for the next, bigger chip. The synthesis was successful and its results are shown in the Tables
1, 2, 3 and 4.

Even the smallest members of Virtex-4 family provide sufficient resources to implement the DSP system with
6 processing units. The achievable clock frequency is equal to c.a. 66MHz, however it should be possible to
improve this by adding pipeline registers in the processing units. Doubling of numbers of processing units does
not lower significantly the maximum clock frequencies, if we use a chip with sufficient resources (compare tables



Table 3. Results of synthesis of DSP system with 12 processing units in Virtex-4 xc4vlx25-12 chip.

Device Utilization Summary

Number of BUFGs 2 out of 32 6%

Number of DSP48s 48 out of 48 50%

Number of External IOBs 68 out of 240 28%

Number of LOCed IOBs 0 out of 68 0%

Number of RAMB16s 72 out of 72 100%

Number of Slices 10750 out of 10752 99%

Number of SLICEMs 0 out of 5376 0%

Speed parameters
Maximum clock frequency 55.47MHz

Table 4. Results of synthesis of DSP system with 12 processing units in Virtex-4 xc4vlx40-12 chip.

Device Utilization Summary

Number of BUFGs 2 out of 32 6%

Number of DSP48s 48 out of 64 75%

Number of External IOBs 68 out of 448 15%

Number of LOCed IOBs 0 out of 68 0%

Number of RAMB16s 96 out of 96 100%

Number of Slices 13414 out of 18432 72%

Number of SLICEMs 0 out of 9216 0%

Speed parameters
Maximum clock frequency 66.68MHz

2 and 4). Use of too small chip may result in significant drop of maximum clock frequency due to inefficient
internal routing of signals (compare tables 3 and 4). Comparison of number of slices in tables 2 and 4 suggests
that the logical resources consumption is almost proportional to the number of processing units. Obtained results
allow to assume, that the proposed architecture is reasonably scalable.

5. FURTHER WORK

5.1 Non-uniform architectures

The tested ”proof of the concept” architecture was uniform - all processing units provided the same functionality.
In the real operating system however some processing units may offer extended functionality - e.g. performing
of more complex operations like division or calculation of square root. The interesting question will be how
integrate those “extended processing units” with rest of the system.

In this paper no problems associated with the input and output have been discussed. In the real system
however some processing units should be equipped with additional functionality to service a serial or parallel
I/O interface.

5.2 Programming tools

The proposed architecture offers good computational power at reasonable costs, but it may be difficult to
programming. Development of code for state machine controlled parallel architecture described in Ref.9 proved
to be possible but time consuming and error prone. The proposed architecture may be even more difficult to
program, especially if we consider non-uniform versions proposed in the previous subsection, or different latencies



associated with some more complex operations. The distribution of data buffers and coefficients between different
available memories may also significantly affect the processing speed. Therefore dedicated tools are needed to
optimally organize data distribution and to automatically generate code for processing units. The first attempts
to prepare such a tool are described in Ref.18

6. CONCLUSIONS

The architecture described in this document provides a scalable method for implementation of highly parallel DSP
algorithms in the FPGA chip. Use of dual port memory (DPRAM) allows to efficiently transfer data between
independently operating processing units minimizing overhead related to access arbitration. The resources
consumption is almost linearly dependent on the number of processing units, which assures good scalability. The
scalability may be affected however by the maximum size of the DPRAM blocks used to connect processing units.
The performance of some algorithms may be significantly lowered, when the data structures (vectors, matrices)
do not fit into single DPRAM block. The significant disadvantage of the proposed architecture may also be a
difficulty to transform the standard DSP algorithm into the highly parallel form, well suited for execution on
the platform with multiple small data memories and multiple processing units. The reliable generation of code
may require dedicated programming tools.
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