
Copyright 2013 Society of Photo-Optical Instrumentation Engineers.
This paper was published in Proceedings of SPIE (Proc. SPIE Vol. 8903,

89032N, DOI: http://dx.doi.org/10.1117/12.2033281) and is made avail-
able as an electronic reprint (preprint) with permission of SPIE. One print
or electronic copy may be made for personal use only. Systematic or mul-
tiple reproduction, distribution to multiple locations via electronic or other
means, duplication of any material in this paper for a fee or for commercial
purposes, or modification of the content of the paper are prohibited.

1

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1763190
http://dx.doi.org/10.1117/12.2033281

Embedded controller for GEM detector readout system

Wojciech M. Zabołotnya and Adrian Byszuka and Maryna Chernyshovab Radosław Cieszewskia and

Tomasz Czarskib and Wojciech Dominikc and Katarzyna L. Jakubowskab and Grzegorz Kasprowicza

and Krzysztof Poźniaka and Jacek Rzadkiewiczb,d and Marek Scholze

aInstitute of Electronic Systems, Warsaw University of Technology, ul. Nowowiejska 15/19,

00-665 Warszawa, Poland;
bInstitute of Plasma Physics and Laser Microfusion, ul. Hery 23, 01-497 Warszawa, Poland;

cInstitute of Experimental Physics, Faculty of Physics, Warsaw University, ul. Hoża 69, 00-681

Warszawa, Poland;
d National Centre for Nuclear Research, ul. Andrzeja Sołtana 7, 05-400 Otwock, Świerk, Poland;

e Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342

Kraków, Poland;

ABSTRACT

This paper describes the embedded controller used for the multichannel readout system for the GEM detector. The con-

troller is based on the embedded Mini ITX mainboard, running the GNU/Linux operating system. The controller offers

two interfaces to communicate with the FPGA based readout system. FPGA configuration and diagnostics is controlled

via low speed USB based interface, while high-speed setup of the readout parameters and reception of the measured data

is handled by the PCI Express (PCIe) interface. Hardware access is synchronized by the dedicated server written in C.

Multiple clients may connect to this server via TCP/IP network, and different priority is assigned to individual clients.

Specialized protocols have been implemented both for low level access on register level and for high level access with

transfer of structured data with "msgpack" protocol. High level functionalities have been split between multiple TCP/IP

servers for parallel operation. Status of the system may be checked, and basic maintenance may be performed via web

interface, while the expert access is possible via SSH server. System was designed with reliability and flexibility in mind.

Keywords: Data acquisition systems, GEM detectors, embedded systems, data processing, system control

1. INTRODUCTION

The block diagram of the GEM1 detector readout system2, 3 is shown in the Figure 1. The main part of the readout system

consists of the FPGA chips, which control the front end boards (FEB) and analog-to-digital converters (ADC), receive

the data, preprocess them, detecting hits and estimating their energy and position, time-stamp the data using the external

synchronization signal and store results in the DDR memory.4, 5

This FPGA based system requires sophisticated configuration after power-up, and control when performing measure-

ments. Finally the acquired data, after some processing, must be transferred to the data acquisition system via the computer

network. To perform those functions the readout system is equipped with the dedicated controller based on embedded com-

puter system.

2. REQUIREMENTS FOR THE SYSTEM CONTROLLER

The proposed system controller must meet wide range of requirements related to its desired functionality and reliability.

• Initialization of the system

When the readout system is switched on, it is necessary to switch on power supply of different subsystems, checking

their correct operation. Additionally it is necessary to configure the FPGA chips, using the configuration bitstreams.

Further author information: (Send correspondence to W.M.Z.)

W.M.Z.: E-mail: wzab@ise.pw.edu.pl, Telephone: +48 22 234 7717

GEM

detector

256 analog

channels

Embedded

PC
(ITX motherboard)

USB to

I2C and

bus bridge

USB

JTAG

Parallel bus

FPGA based subsystem

HV power

supply

Meteo

station

temperature

sensor

humidity

sensor

temperature

sensor

PCIe Ethernet

TCP/IP

DAQ

DDR

memory

FEB
(16 ch.)

ADC
(16 ch.)

FPGA
FMC 0

FPGA
carrier 0

FPGA
backplane

FEB
(16 ch.)

ADC
(16 ch.)

FPGA
FMC 15

FPGA
carrier 3

FEB
(16 ch.)

ADC
(16 ch.)

FPGA
FMC 3

[...] [...] [...]

[...]

[...] [...] [...]

Figure 1. Block diagram of the GEM detector with readout system and controller.

• Monitoring of the system

When system is properly initialized, it is necessary to continuously monitor its state, providing notifications about

possible problems, and undertaking necessary actions to protect the system.

• Control of the system

The GEM detector may be used in different modes. Usually it measures the radiation produced by the investigated

object under control of the data acquisition system, but it must be also periodically calibrated with the known radia-

tion provided by the calibration radiation source. Additionally sometimes it may be used in a special “development

mode”, when the operator works with the detector interactively, or executing short scripts.

This variety of different operating modes requires, that the system controller must be able to accept requests from

different clients, assuring appropriate arbitration and synchronization of requests.

• Transmission of the measured data

The data acquired by the FPGA based part of the system are stored in the DDR memory, connected to the FPGA

chip. These data must be efficiently transferred to the system controller, submitted to further processing and finally

transferred to the data acquisition system via computer network.

Performing of these tasks requires availability of the high speed local link to quickly transmit huge amount of data

from the FPGA connected DDR memory to the computer system, and possibility to work with the TCP/IP network.

Except of the above requirements related to the system’s functionality, there is yet another set of requirements related to

the reliability of the system.

• Autonomous unsupervised operation

The readout system is located near to the GEM detector, and may be difficult to access. Therefore it is important,

that the system is able to work for a long time without supervision.

• Possibility of remote management

In case if the system is hardly accessible, it should be possible to control most of its functions from remote location

via the TCP/IP network.

• Robustness against random power failures

It is possible that the system may experience random power cut, due to the power supply system malfunction or due

to erroneous operation. It is necessary that such incident does not damage the system.

3. HARDWARE PLATFORM AND OPERATING SYSTEM

As the hardware platform fulfilling the requirements listed in the previous section, we have used the embedded PC, based

on the ITX motherboard. Use of the standard hardware platform allowed us to choose the operating system from the broad

range of operating systems available for PC-compatible systems.

To have full control over the operating system and drivers, we have decided for an Open Source solution and used

the dedicated Linux system, built with the Buildroot6 environment. The Buildroot environment allowed us to build the

small Linux system with precisely selected set of programs and drivers needed to implement our controller. Additionally

it allowed us to easily add additional software not included in the standard Buildroot environment.7

4. SOFTWARE ORGANIZATION

Basing on selected hardware platform and operating system, we could design the software architecture of our controller.

According to the requirements described in section 2, our controller is supposed to work with multiple clients trying

to perform certain actions with the hardware components of the readout system. To assure proper synchronization be-

tween operations performed by different clients, the direct hardware access is controlled by the dedicated “Main Hardware

Server”, responsible for proper serialization of requests.

4.1 Main Hardware Server

The Main Hardware Server is written in C, to assure precise control of resources utilization and to provide highly optimized

implementation of hardware handling routines.

The Main Hardware Server controls the USB bridge,8 providing access to different low-speed interfaces in the system,

such as the I2C bus, the JTAG interface used to configure FPGA chips, and the parallel local bus used to access the

diagnostic registers.

The Main Hardware Server ensures also access to the PCI Express (PCIe) interface,9 used to provide high-speed access

to configuration registers in the FPGA based subsystem, and to transfer results of measurements from the DDR memory.

From the client’s point of view, the Main Hardware Server implements a multithreaded TCP server, listening on the

54321 port. Each client is serviced in a separate thread, and a set of semaphores is used to avoid collisions when accessing

different hardware components. Special care is taken to avoid memory leaks in a situation, where due to access errors one

of client threads is terminated, e.g. due to erroneous attempt to access the hardware. As a special precaution, wherever

possible, all data structures needed to execute particular request are allocated on stack, so they are freed automatically,

when handling of the request is completed or terminated.

4.2 Implementation of higher level procedures

The Main Hardware Server provides access to the hardware components both for external clients, and for other, internal

servers, responsible for performing of more complex operations. Those servers are needed to allow autonomous operation

of the system.

To allow easy and fast development and debugging of high level procedures, they have been implemented in Python.

Even though programs written in Python are executed significantly slower than equivalent programs written in C, Python

offers important advantages:

• Automatic memory management. Risk of memory leaks due to errors in memory management is significantly

reduced for Python programs, comparing to programs written in C or C++.

• Python is an object oriented programming language. The programmer may easily implement classes describing

the hardware components, and create methods corresponding to typical operations performed with those hardware

components.

• Python offers powerful and flexible exceptions mechanism allowing to precisely handle different errors, occurring

during the execution of the program, e.g. due to errors in communication with hardware or communication via

network. This functionality is very significant, when implementing hardware oriented systems, like this controller.

• Python offers a broad range of libraries solving typical programming problems. E.g. it is possible to implement a

TCP server in just a few lines of code.

The higher level procedures have been implemented as a set of servers performing separate control or diagnostic tasks.

4.3 Monitoring and Measurement Server

The main server implementing the high level procedures is the Monitoring and Measurement Server. Its responsibility is to

periodically check the state of the detector and of the readout system. Additionally it performs the calibration measurements

of the radiation produced by the calibration 55Fe iron source, to check current gain of the detector. On request from the

central data acquisition system, this server also performs the measurement of the radiation produced by the investigated

object - which is the most important task of the whole detector system.

Main problem in this server was to assure correct mode switching between the monitoring and calibration measure-

ments and the measurements of the object. As the configuration of the hardware for those two modes may be different, it is

necessary to perform reconfiguration of the hardware before the measurement. To allow that, the central acquisition system

must provide the early notification, that the measurement of the object is planned in the nearest future. This notification

interrupts the monitoring or calibration procedure, starts configuration of the system for object measurement, and forces

the system to wait for the hardware trigger system, starting the measurement.

To minimize the required time between the early notification and the measurement, it is desirable, that the interruption

of the monitoring or calibration procedure should be as fast as possible, however this is not easy to achieve. Not all control

procedures may be interrupted on any time, and some of them, when not completed properly may leave the system in an

unstable state. Therefore it was necessary to implement a sort of cooperative preemptivity. The monitoring ans calibration

procedures actively check in appropriate moments, if there is a request to switch into the measurement mode.

The Monitoring and Measurement Server is accessible via TCP/IP network at two ports. The port 54325 is available for

requests related to performing calibration and measurements, while port 54324 is available for sending of new configuration

settings for the detector and readout system. Such separation of ports for different services allowed to simplify the protocol

and the server.

Two other servers are managing the external hardware connected to the readout system via USB interface.

4.4 Meteo station server

As the parameters of the GEM detector depend on such parameters as temperature and air pressure,10 a USB connected

meteo station is provided to continuously monitor those parameters and additionally humidity. As the meteo station sends

measured parameters to a single receiver, a dedicated server is implemented in Python, which receives the results from

the meteo station, stores them, and on request forwards the last result to the client connected to the 54323 TCP/IP port.

Multiple clients may be served in parallel.

4.5 High voltage server

For correct operation, the GEM detector requires the High Voltage (HV) power supply. This voltage must be precisely

controlled, and erroneous setting of too high voltage may result in a permanent damage of the detector. The HV power

supply used in our system is controlled via the USB interface. In case if multiple clients are trying to contact the HV power

supply (e.g. the first one trying to set new voltage settings, and the second one requesting results of measurement of current

output voltages), possible mixing of their request could have disastrous consequences. The HV server receives requests

from multiple clients connected to the 54322 port, and handles them consecutively. The HV server is also implemented in

Python.

5. NETWORK PROTOCOLS

The readout controller uses the TCP/IP network to communicate with clients. The important assumption, we have made,

is that the system is connected to the physically protected private network, which is usually the case in professional data

acquisition systems. This assumption allowed us to implement very simple network protocols without the overhead related

to security issues associated with usage of publicly available networks.

Anyway due to the use of Linux OS, if it is necessary, it is trivial to add an additional layer in the network protocols

(e.g. SSL/TLS, or VPN), which would cryptographically protect the controller, providing authentication of clients and

control of integrity of transmitted commands and responses.

5.1 Protocols used by the Main Hardware Server

The Main Hardware Server is listening at 54321 TCP/IP port and uses two protocols. The first one, the “basic protocol”

implements very simple operations, like sequence of read or write accesses via the local bus, via the I2C bus, or via

PCIe bus. Additionally the basic protocol implements requests to configure the particular FPGA chip with the SVF file

transmitted to the server. The syntax of requests in the basic protocol is very simple. Each request contains the type of

request, the length of the request and associated data, and the data. Execution of each request is confirmed by the server.

In case of reception of erroneous or corrupted request, the server notifies the client with an error message, and additionally

closes the connection, to prevent further interpretation of corrupted input data, which could result in execution of random

requests. The client in this case should handle the error and reconnect to the server.

The basic protocol is used by other servers, and also by external Matlab based clients, which are used for development

of algorithms for control of the detector, analysis of data, and calibration of the detector11, 12

The basic protocol implements also a special command allowing the client to switch the server to the second one –

“extended protocol”.

The extended protocol is used for more complex commands and procedures, which require sending of more complex,

structured request arguments to the server, and receiving complex, structured results. When implementing the extended

protocol, many solutions like standard RPC, or JSON were considered, but finally we have decided use the msgpack13

library. The msgpack library allows communication between clients and servers written in different languages, e.g. Java,

C, C++, Python and many others and offers efficient packing of different data formats.

5.2 Protocols used by the Measurement and Monitoring Server, HV Server and Meteo Server

The Measurement and Monitoring server uses the msgpack based protocol for requests related to calibration and measure-

ments.

However, as the configuration settings are prepared, and sent by the Matlab based system, and there is no reasonable

msgpack implementation for Matlab yet, the requests related to configuration of the readout system use another protocol,

based on sending of text messages in format compatible with the ConfigParser14 Python package.

Similarly the protocols used by the Meteo Server and HV Server are based on simple text messages to allow easy

communication with Matlab based clients. In case of the HV Server, the transmitted messages are additionally protected

with the checksum, to limit risk of inadvertently setting of incorrect high voltage value due to corrupted message.

6. DIAGNOSTIC FUNCTIONS

The important part of activity of the Measurement and Monitoring Server is the continuous monitoring of the state of the

readout system. It is possible due to availability of multiple sensors, measuring the voltages, currents and temperatures in

different parts of the system, connected to the I2C bus.

To allow easy acquisition and handling of these diagnostic information, a dedicated, object oriented I2C framework

has been implemented in Python. This framework allows to create and maintain two independent hierarchies of the I2C

sensors. The first one - related to the position of the sensor in the I2C bus. It automatically sends correct values to the I2C

switches in case of the multi-branch I2C bus, as needed to access the particular sensor. The second one - reflects the logical

organization of the sensors. The framework automatically detects damaged or inaccessible sensors. When a report about

the state of the system is requested, the first hierarchy is scanned to access all sensors, and then the second one is used

to organize the acquired information. The final report is generated in the XML format, which is both - human readable

and machine readable, and may be both - included in the results of measurement, and written to the logs of the system, as

described in section 9.

7. REMOTE HANDLING

The controller mainly works communicating with remote clients via TCP/IP network. However sometimes it is necessary to

remotely perform some maintenance operations. In this case the operator may use the HTTP server, which is implemented

in Python, and offers graphical user interface, allowing to perform simple maintenance (see Figure 2).

Figure 2. Access to the basic maintenance procedures via WWW browser and embedded HTTP server.

The HTTP server is also used by remote clients to obtain information, that the system has completed initialization after

power-up and is ready to work (see Figure 3).

If more advanced intervention in the system is needed, the expert may log in via the SSH server, and perform necessary

actions from the system shell command line. Additional measures, described in section 8, are provided to allow testing of

the modified version of system software, with possibility to quickly restore the standard version.

In the worst case of system instability, if even the network connection and/or SSH server do not work, it is possible to

connect the serial console (which also allows remote operation, if connected to the serial port of another network connected

system), or standard keyboard and LCD display, to diagnose the system locally.

8. RELIABILITY AND FLEXIBILITY OF THE DESIGN

In current embedded systems, the filesystem layer intensively uses data buffering to improve performance, resulting in a

risk, that inappropriate shutting down of the system e.g. due to power failure or incorrect operation, may lead to filesystem

corruption and may render the system unusable.

This risk may be significantly reduced by use of journaling filesystems, however in our system we have decided to use

yet another solution. Due to low price of RAM memory, it was possible to equip the hardware platform with memory of

capacity sufficient, to load the whole operating system image into the ramdisk. Namely we used the ITX board equipped

with 4GB of DDR3 RAM.

The controller system is booted from the external USB flash disk. During the start up of the system, the Linux kernel

together with the initramfs root file system is loaded from that disk into the memory. After the system is booted, all

programs are available in the ramdisk. Such solution speeds up operation of the system, as there is no need to load

programs from relatively slow mass storage during the operation. Of course this approach is suitable mainly for embedded

systems with limited and carefully selected set of programs - just like our system created with the Buildroot environment.

With this solution the external USB flash disk could be mounted read-only, preventing any possibility of corruption due

to random power failure. However sometimes it is necessary to modify the information stored in the flashdisk - therefore

it is mounted in read-write mode, but all modifications are performed in such a way, that the new file to be written into the

Figure 3. Logs from the start of the system, available via the HTTP server,

#!/bin/sh

#/etc/init.d/S41overlay file

modprobe vfat

mkdir /tmp/d

#Mount the boot USB flashdisk in /tmp/d

mount /dev/sda1 /tmp/d

#If the overlay script is present,

#execute it

if [-e /tmp/d/overlay.sh] ; then

/tmp/d/overlay.sh

fi

#!/bin/sh

#Sample overlay.sh file to be placed

#in the main directory in USB flashdisk

if [-e /tmp/d/overlay.tbz2] ; then

(

cd /

cat /tmp/d/overlay.tbz2 | bzip2 -cd | tar -xf -

)

fi

Figure 4. Sample shell scripts involved in process of modification of standard operating system image during booting of the system.

flashdisk is prepared in advance, and then quickly copied to the flashdisk, with the “sync” command executed immediately

after the copying is finished. That way the time window, in which random power failure may lead to filesystem corruption is

reduced to minimum. Of course it is possible to further reduce this danger by use of journaling file system on the flashdisk,

but to maintain compatibility with Windows machines, we have decided to use flashdisk formatted with the standard VFAT

filesystem.

The described approach facilitates also testing and debugging of the controller itself, as it is very easy to modify some

user programs in the ramdisk. In case if such modification leads to system instability, it is sufficient to reboot to recover

standard software and correct operation.

8.1 Flexibility of the design

The operating system image (kernel + initramfs data) produced by the Buildroot environment may be quite big file (it

is a 40MB file in current version of our controller), and its recompilation may also consume significant amount of time.

Therefore, to make small modifications easier, we have added possibility to add a special shell script in the main directory

of the boot USB flashdisk. During booting of the system existence of this script is checked, and if it is present, it is

executed on very early stage of system initialization. Typically, this script is used to unpack the tar archive containing

modified versions of programs and scripts. Sample content of scripts involved in that process is shown in the Figure4

To make sure, that essential services are running, whenever the server is started, the servers are started by the init

process, according to the definitions in the /etc/inittab file. Such solution however makes difficult to test modified version

Part of the /etc/inittab file

responsible for starting the

monitoring server

now run any rc scripts

::sysinit:/etc/init.d/rcS

[...]

tty5::respawn:/opt/srv_monitor.sh

#!/bin/sh

/opt/srv_monitor.sh wrapper script,

responsible for running

the measurement and monitoring server

while true; do

if [-e /var/run_monitor]; then

/opt/srv_monitor.py

if server crashes, try to restart it

after 5 seconds

sleep 5

else

If start of the server was forbidden,

check again after 10 seconds

sleep 10

fi

done

Figure 5. The inittab configuration and shell script involved in control of running of monitoring server. Similar solution is used do

control starting of other servers.

of the particular server . Therefore starting of each server is enabled only if a special file is present in the /var directory.

Details of the implementation are shown in the Figure 5.

With such implementation the operator may delete the file /var/run_monitor, kill the running server, and start the

modified version or run other program controlling the related part of the hardware. Again, simple rebooting of the system

recovers standard operation.

8.2 Flexible configuration of the FPGA chips

The controller provides also means to easily modify configuration of the FPGA chips. These chips are configured during

the start-up of the system with the SVF files, stored in the USB flash disk. Except of the SVF file themselves, there is also

stored information about their internal registers structure, according to the Internal Interface15, 16 specification. All those

files may be easily replaced with the new or experimental versions of the FPGA firmware.

It is also possible to keep the standard version of those files in a backup directory on the same disk, making restoration

of the standard configuration very easy.

9. LOGGING OF POSSIBLE ERRORS AND EXCEPTIONS

The readout system requires continuous monitoring of the state of detector and the system itself. Any abnormalities or

execution errors should be logged for further analysis. The decision to build a system controller not equipped with a hard

disk, disallows us to use the standard approach with logs written to the dedicated directory in a filesystem on harddisk.

Available options were as follows:

• Writing logs to the directory in the ramdisk. Of course in this approach we must limit the size of the logfiles, as

filling the ramdisk with the logfiles may induce system instability. Fortunately, the Python package logging17 offers

functionality to rotate the logfiles when they reach predefined size. The big disadvantage of such approach, that in

case of failure causing system crash, it is impossible to read and analyze the logfiles.

• Writing logs to the logfiles located in the FLASH disk. In this approach we also must to limit the size of the logfiles

due to limited capacity of the flashdisk. Because the main filesystem in the flashdisk should be mounted read-only

due to reliability reasons, as described in section 8, we need to provide another partition on the FLASH disk for

logfiles. Unfortunately such multi-partition USB flash disks are not compatible with the Windows operating system,

which recognizes only the first partition. Therefore analysis of logs after hypothetical system crash would not be

possible on the Windows machine. Another variant of this approach could be to provide one USB flash disk for

system initialization and configuration data, and the another one for system logs. Additionally the “log disks” could

be easily replaced with the empty ones when they get filled with the log data, and archived.

There is yet another disadvantage of this approach however. To limit the wear of the FLASH disk, it is desirable to

buffer the log information in the memory and write it to the disk only when a complete buffer is filled. Unfortunately

this data buffering results in loss of the last log data in case of serious stability problems resulting in kernel panic.

Figure 6. Example of the X-ray spectrogram of plasma, measured during the tests in the JET facility. The X-axis is the time in seconds.

The Y-axis is the position of the hit in the 1-D GEM detector, which corresponds to the photon energy (in arbitrary units). The colour of

the pixel shows the number of hits.

So the most interesting data, which may be extremely useful when investigating causes of the experienced problems

are likely to be lost.

Therefore finally we have decided to use the third option:

• Sending log messages via network to the separate logserver. As our system is usually connected to the DAQ system, it

should be possible to configure one of the DAQ computers to serve as the logserver for our system. In this solution the

generated log messages may be quickly sent out, so even in case of system crash, we can preserve messages generated

shortly before the failure. Additionally all log messages are immediately available in the DAQ server, even if our

system is temporarily non-functional and requires rebooting. This method was also implemented using the Python

logging17 package. However the suggested implementation based on SocketHandler and LogRecordStreamHandler

classes18 relies on sending of Python objects via “pickle” protocol. Receiving such objects via the logserver creates

serious security risk,19 and therefore alternative solution, based on msgpack library was also developed.

10. RESULTS

The controller has been tested during development of the GEM based KX1 diagnostics for the JET facility.11, 20 In this

system the controller services two independent GEM detectors, dedicated for measurement of tungsten and nickel X-ray

spectra. Each detector contains 256 anodes (strips) connected to analog input channels. The photons from collimated,

measured X-ray radiation are reflected at different angles by a Bragg crystal, so that the frequency of hits at different

strips is proportional to intensity of X-ray radiation in corresponding energy range. The system measures plasma radiation

spectrum as a function of time, with resolution up to 10 ms.

The low level access from Matlab was successfully used for development of control and data processing algorithms.12

Functionality associated with the autonomous operation of the controller with external calibration loop provided by the

Matlab based data processing client is currently tested. However promising results have been obtained. Example spectro-

gram of the plasma, measured during the test in the JET facility, by the GEM detector with readout system fully controlled

by the presented controller, is shown in the Figure 6.

Figure 7. Example of readout system monitoring results, distributed via the HTTP server as an XML file. Temperatures of particular

boards, power supply voltages and currents are displayed.

Example of readout system monitoring results, distributed via the HTTP server and displayed in the operator’s web

browser is shown in the Figure 7.

11. CONCLUSIONS

The presented embedded controller is a versatile solution aimed on control of multichannel FPGA based readout systems.

Even though some functionalities were developed specifically for GEM detector, it should be possible to easily adapt them

to other types of detector and front end electronics.

The embedded controller offers high flexibility - most functionalities may be remotely controlled and modified, and

different access levels are available - the WWW based for the normal operator, and SSH based for the expert.

The controller is highly resistant to random power failures. Due to the ramdisk-based operation, the risk of the filesys-

tem corruption is reduced to minimum. Booting of the whole system from the external USB flashdisk allows to keep

different configurations of the system ready for immediate use.

The controller software is able to handle multiple clients, providing appropriate arbitration between requests related to

monitoring and calibration procedures running in the background and high-priority requests from the central data acquisi-

tion system associated with measurements of the investigated object.

The controller offers thorough monitoring of the state of detector and the readout system. The status information

may be both included with the measurement data and sent together with other log messages to the remote logging server,

ensuring, that even in the unlikely situation of the controller crash, the useful diagnostic information is preserved.

The aim of this paper is to present solutions used to develop such autonomous, remotely controlled readout controller

and to submit them to discussion. We hope that presented information may be useful for others solving similar engineering

problems.

REFERENCES

[1] Sauli, F., “GEM: A new concept for electron amplification in gas detectors,” Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 386(2-3), 531 – 534

(1997).

[2] Kasprowicz, G., Czarski, T., Chernyshova, M., Dominik, W., Jakubowska, K., Karpinski, L., Kierzkowski, K., Poz-

niak, K., Rzadkiewicz, J., Scholz, M., and Zabolotny, W., “Fast ADC based multichannel acquisition system for the

GEM detector,” Proceedings of SPIE - The International Society for Optical Engineering 8454, 84540M–84540M–8

(2012).

[3] Kasprowicz, G., Czarski, T., Chernyshova, M., Czyrkowski, H., Dabrowski, R., Dominik, W., Jakubowska, K.,

Karpinski, L., Kierzkowski, K., Kudla, I., Pozniak, K., Rzadkiewicz, J., Salapa, Z., Scholz, M., and Zabolotny, W.,

“Readout electronics for the GEM detector,” Proceedings of SPIE - The International Society for Optical Engineer-

ing 8008, 80080J–80080J–9 (2011).

[4] Zabołotny, W., Czarski, T., Chernyshova, M., Czyrkowski, H., Dąbrowski, R., Dominik, W., Jakubowska, K.,

Karpiński, L., Kasprowicz, G., Kierzkowski, K., Kudła, I., Poźniak, K., Rzadkiewicz, J., Sałapa, Z., and Scholz,

M., “Optimization of FPGA processing of GEM detector signal,” Proceedings of SPIE - The International Society for

Optical Engineering 8008, 80080F–80080F–9 (2011).

[5] Pozniak, K. T., Byszuk, A., Chernyshova, M., Cieszewski, R., Czarski, T., Dominik, W., Jakubowska, K., Kasprowicz,

G., Rzadkiewicz, J., Scholz, M., and Zabolotny, W., “FPGA based charge fast histogramming for GEM detector,”

8903, this volume.

[6] “Buildroot: making Embedded Linux easy .” http://buildroot.uclibc.org/ (July 2013). [Online; accessed

18-July-2013].

[7] “The Buildroot user manual, Adding new packages to Buildroot.” http://buildroot.uclibc.org/downloads/

manual/manual.html#adding-packages (June 2013). [Online; accessed 18-July-2013].

[8] Zabołotny, W. M. and Kasprowicz, G., “Low cost usb-local bus interface for fpga based systems,” Proceedings of

SPIE - The International Society for Optical Engineering 8454, 84540T–84540T–7 (2012).

[9] Byszuk, A., Kołodziejski, J., Kasprowicz, G., Poźniak, K., and Zabołotny, W. M., “Implementation of pci express bus

communication for fpga-based data acquisition system,” Proceedings of SPIE - The International Society for Optical

Engineering 8454, 84540N–84540N–6 (2012).

[10] Simon, F., Azmoun, B., Becker, U., Burns, L., Crary, D., Kearney, K., Keeler, G., Majka, R., Paton, K., Saini, G.,

Smirnov, N., Surrow, B., and Woody, C., “Development of tracking detectors with industrially produced GEM foils,”

Nuclear Science, IEEE Transactions on 54(6), 2646–2652 (2007).

[11] Jakubowska, K., Rzadkiewicz, J., Dominik, W., Scholz, M., Zastrow, K.-D., Chernyshova, M., Czarski, T., Karpinski,

L., Komarzewski, A., Czyrkowski, H., Dabrowski, R., Kudla, I., Kierzkowski, K., Salapa, Z., Blanchard, P., Tyrrell,

S., Pozniak, K., Kasprowicz, G., Zabolotny, W., and JET EFDA Contributors, “Development of a 1D triple GEM

X-ray detector for a high-resolution X-ray diagnostics at JET,” 38th EPS Conference on Plasma Physics 2011, EPS

2011 - Europhysics Conference Abstracts 35 1, 716–719 (2011).

[12] Czarski, T., Chernyshova, M., Dominik, W., Jakubowska, K., Kasprowicz, G., Pozniak, K., Rzadkiewicz, J., Scholz,

M., and Zabolotny, W., “Fundamental data processing for GEM detector measurement system applied for X-ray

diagnostics of fusion plasmas,” Proceedings of the 40th EPS Conference on Plasma Physics (2013). also available at

http://ocs.ciemat.es/EPS2013ABS/pdf/P5.120.pdf.

[13] “MessagePack: It’s like JSON. but fast and small. .” http://msgpack.org/ (July 2013). [Online; accessed 18-July-

2013].

[14] “ConfigParser — Configuration file parser.” http://docs.python.org/2/library/configparser.html (June

2013). [Online; accessed 18-July-2013].

[15] Pozniak, K. T., Bartoszek, M., and Pietrusinski, M., “Internal interface for rpc muon trigger electronics at cms

experiment,” 269–282 (2004).

[16] Drabik, P. and Pozniak, K. T., “Maintaining complex and distributed measurement systems with component inter-

nal interface framework,” Proceedings of SPIE - The International Society for Optical Engineering 7502, 75022C–

75022C–9 (2009).

[17] “logging — Logging facility for Python .” http://docs.python.org/2/library/logging.html (July 2013).

[Online; accessed 18-July-2013].

http://buildroot.uclibc.org/
http://buildroot.uclibc.org/downloads/manual/manual.html#adding-packages
http://buildroot.uclibc.org/downloads/manual/manual.html#adding-packages
http://ocs.ciemat.es/EPS2013ABS/pdf/P5.120.pdf
http://msgpack.org/
http://docs.python.org/2/library/configparser.html
http://docs.python.org/2/library/logging.html

[18] Sajip, V., “Logging Cookbook .” http://docs.python.org/2/howto/logging-cookbook.html (July 2013).

[Online; accessed 18-July-2013].

[19] “pickle - Python object serialization .” http://docs.python.org/2/library/pickle.html (July 2013). [Online;

accessed 18-July-2013].

[20] Rzadkiewicz, J., Dominik, W., Scholz, M., Chernyshova, M., Czarski, T., Czyrkowski, H., Dabrowski, R.,

Jakubowska, K., Karpinski, L., Kasprowicz, G., Kierzkowski, K., Pozniak, K., Salapa, Z., Zabolotny, W., Blanchard,

P., Tyrrell, S., Zastrow, K.-D., and JET EFDA Contributors, “Design of T-GEM detectors for X-ray diagnostics on

JET,” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment 720, 36–38 (2013).

http://docs.python.org/2/howto/logging-cookbook.html
http://docs.python.org/2/library/pickle.html

