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ABSTRACT

This paper presents a simple system consisting of the FPGA core, network protocol and Linux kernel driver, aimed on

efficient transmission of acquired data from the low resources FPGA equipped with Ethernet PHY to the embedded system,

responsible for preprocessing of those data and sending them further via standard network links.

The system has been optimized regarding the memory and logic consumption in the FPGA. Implementation based

on the Layer 3 protocol allows to minimize latency of the packet acknowledge, which results in reduction of memory

requirements on the FPGA side. The driver code has been optimized to avoid unnecessary copying of data between

buffers in memory, allowing the user application to access received data via memory mapped buffer. The system has been

successfully tested in real hardware. Sources of the whole system are published and freely available under Open Source

licences ( partially under GPL, partially under BSD and partially as public domain).

Keywords: FPGA, Ethernet, Embedded systems, Data acquisition system, Layer 3 protocol, data transmission, open

source

1. INTRODUCTION

Transmission and concentration of data from multiple input channels is a significant problem in modern measurement

systems. The cost of the data transmission subsystem may be a significant part of the total cost of the system. Additionally

this subsystem is essential for reliable operation of the whole measurement system, so it is important that it is based on well

tested hardware components, and for good maintainability it is also desirable, that those components are widely available.

Considering the above factors, the Ethernet network seems to be a good choice to build such a data transmission and

concentration subsystem.

In the typical measurement system, the sensors and detectors are connected to the Front End Boards (FEBs). These

boards receive input signals, convert them to the digital form, typically supplement with the time stamps and send them to

the system components responsible for further processing of concentrated data, which typically are the computer systems.

The FEB boards are often based on the Field Programmable Arrays (FPGA) chips, due to their good performance in

parallel data processing, easy interfacing with different interfaces used in the input sensors and converters, and easy gener-

ation of precise timing relationships between different signals, needed to provide deterministic and jitter-free sampling of

input signals.

Another important property of the FPGA chips is their flexibility, and possibility to correct possible errors by simple

modification of the chip configuration (firmware), which can be done without hardware modification.

As the FEB boards are typically one of most numerous components of the measurement system, they should be price

optimized. It means, that they should use possibly cheap FPGAs with minimized number of external components. To

combine advantages of both: Ethernet based data transmission and FEB boards based on inexpensive FPGA chips, it is

necessary to implement a method for reliable data transmission from small FPGA to the computer system via Ethernet

link.
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a) Standard TCP/IP based solution b) Desired, simpli ed solution

Figure 1. Two possible methods to connect the FPGA chip to the Ethernet network. The first one is based on soft-core CPU with MAC

controller and external memory for data buffering. The second one uses the simplified Ethernet Controller and minimizes amount of

external components.

2. USE OF FPGA WITH ETHERNET INTERFACES

The FPGA may be easily connected to the Ethernet PHY, allowing to transmit and receive Ethernet packets. Many FPGA

development kits, e.g. the Spartan 3E Starter Kit,1 Spartan 6 based SP6012 board and also Spartan 6 based Digilent Atlys3

board, all used in this research, offer such configuration.

There is however one significant problem, associated with the Ethernet transmission. The Ethernet does not assure

reliable transfer of data. The bit error rate in the physical link may be up to 10−8 in the 10Base-T4 Ethernet, and up

to 10−10 in the 100Base-T5 and 1000Base-T6 Ethernet. It is also possible, that the receiving computer may drop some

received packets due to insufficient resources to process them in a timely manner. Additionally, in some links there is a

risk of packet corruption due to collisions, however this problem may be avoided by using only full duplex links in the data

transmission system.

The inherent unreliability of Ethernet transmission is compensated in the higher layers of the network protocols. The

most popular solution providing reliable transmission of data through unreliable network connection is the TCP/IP protocol

with reliability achieved by implementation of the acknowledge/retransmission mechanism. There are some TCP/IP im-

plementations available for FPGA chips,7–9 but they require a lot of resources to implement the soft-core CPU or complex

state machines and a lot of memory to buffer the data (see Figure 1 a ).

What we need, is a solution providing reliable transfer of data via Ethernet link, even from the small FPGA chip without

implementing soft-core CPU and without connecting of the external memory (see Figure 1 b ).

To create such solution however, we need to analyze the constraints and requirements associated with the attempts to

ensure reliable data transfer between FPGA and a computer.

High resources consumption of the TCP/IP based solution results mainly from two facts. The first one is a high

complexity of the TCP/IP stack, which results from its versatility. The TCP/IP is prepared to work in the heterogeneous

network, where communicating systems may be connected via many routers, and many network segments, possibly of

different type. Additionally the TCP/IP assumes, that the network between the communicating systems may be insecure,

so different mechanisms are implemented to prevent possible malicious attacks.10–15

In our data transmission subsystem, we may assume, that we use only the Ethernet network, and that the network

connection is physically protected (which should be anyway assured to grant reliability of the measurement system). This

assumptions allow us to use much simpler protocol. It also appears (which will be analyzed later), that we don’t need

routing, which leads to further simplification of the protocol, but requires that both communicating systems are located in

the same network segment or segments connected via Ethernet switches.

Next problem related to high resources consumption - namely - necessity to provide a lot of memory for buffering of

data, is associated with the acknowledge/retransmission mechanism used to ensure reliable transmission. Required amount

of memory is directly associated with the transmission speed and with the latency of packet acknowledgement. If we

denote the transmission speed as Rtransm, and the maximum acknowledge latency as tack max, the required memory buffer

capacitance Mbu f may be calculated from the following formula:

Mbu f = Rtransm tack max (1)
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Figure 2. Architecture of the data transmission subsystem based on the FPGA connected to the Ethernet link and using the private,

optimized Ethernet protocol, to transmit data to the embedded system. This embedded system receives data, preprocesses them, and

sends them further for final processing or archiving, using standard network protocols.

Therefore if we want to transmit the data at certain speed, the only way to reduce the memory usage is to reduce the

acknowledge latency.

Sample results of measurement of TCP/IP acknowledge latency are reported in [16]:

• 170 µs for Intel Core 2 T5500/1.66 GHz based system

• 240 µs for Pentium 4/2.8 GHz based system

• 520 µs for Ralink RT3350/320 MHz based system.

When routing is involved, the acknowledge latency increases above 1 ms. To ensure data buffering for the 1Gb/s transmis-

sion with the 2nd of listed systems we need above 20 KiB of memory in case without routing, and above 120 KiB in case

with routing. We must also consider, that the above results are just the average, not the “worst case” results.

The high latency of the TCP/IP acknowledge is the result of high complexity of the TCP/IP software stack implemen-

tation in the receiving computer (resulting from the already mentioned complexity of the protocol itself). If we want to

use simpler algorithms, we can eliminate the TCP layer and use one of simpler IP protocols (e.g. UDP). However all IP

protocols still require some overhead associated with routing of packets, which is simply not necessary in our system, as

the routing leads to unacceptable increase of the acknowledge latency.

Therefore the optimal solution seems to be a maximally simple protocol, based on raw Ethernet frames. Such solu-

tions have been already described,17, 18 but none of them is open (the sources are not available), and they do not seem

to be focused on minimization of FPGA resources usage. Therefore the solution described in this paper was developed

independently. The final architecture of the proposed data transmission subsystem is shown in Figure 2.

3. IMPLEMENTATION OF THE SYSTEM

The whole system consists of three parts - the network protocol, the FPGA IP core and the Linux kernel driver, which

will be described in the following subsections. The previous version of the system, which uses more complex FPGA core,

including the Ethernet MAC19 is described in [16].

3.1 Network protocol

The protocol is based on raw Ethernet II frames with the ethertype set to 0xfade. The ethertype 0xfade was chosen

arbitrarily, and is not officially registered, but as the proposed protocol is dedicated for non-routable private network, this

solution seems to be acceptable.

The proposed protocol in its current version uses only four types of packets, shown in Table 1.



Table 1. Structure of the packets used by the transmission protocol. (SRC and TGT - MAC addresses of the transmitter and of the

receiver)

packet direction structure

START packet to FEB SRC TGT 0xfade 0x0001 padding to 64 bytes

STOP packet to FEB SRC TGT 0xfade 0x0005 padding to 64 bytes

DATA packet from FEB
SRC TGT 0xfade 0xa5a5 set number &

packet number

delay 1024 bytes of

data

ACK packet to FEB
SRC TGT 0xfade 0x0003 set number &

packet number

padding to 64

bytes
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Figure 3. Blok diagram of the FPGA IP core used in the system.

The START packet is sent from the receiving computer, to initialize data transfer. After reception of this packet, the

FEB with the MAC address corresponding to the TGT field in the packet, starts to send the data stream. The data stream

is logically divided into sets (each set corresponds to the amount of data which can be buffered in the internal memory of

FPGA). The set is further divided into data packets which are transmitted in the DATA packets. To simplify management

of data both on the FPGA side and on the PC side, the data packets have length of 1024 bytes. In the version of the system

described in this paper the set has length of 32 KiB and is divided into 32 data packets. Successful reception of the DATA

packet is confirmed by the receiving computer with the ACK packet. The receiving computer may also request that the

FEB should stop sending data, by transmitting the STOP packet with TGT field set to the MAC address of the appropriate

FEB.

The protocol may be further extended to provide a method to send e.g. configuration settings to the FEB. Such extension

is relatively simple and does not increase significantly the FPGA IP core.

3.2 Implementation of the FPGA IP core

The block diagram of the FPGA IP core is shown in Figure 3. The data acquired by the FEB are delivered to the syn-

chronous dta bus, and when the system is ready to accept a new data word (which is signalled by the dta_ready signal),

they are written with the dta_we strobe. This part of the IP core works in the system clock domain. The data are handled

by the Data Writer state machine in the Descriptor Manager, which writes them to the dual port Packet Buffers Memory.

This block processes descriptors associated with the data packets. Each descriptor stores the set number associated with

the currently stored data packet and three flags describing its status: valid (V) - set when packet is filled with the new

data, sent (S) - set, when the packet has been transmitted at least once and confirmed (C) - set when the packet has been

confirmed by the receiver.

Another state machine in the Descriptor Manager - the Data Reader - cyclically browses this memory, and requests

sending of the new packets and periodical retransmissions of the unconfirmed packets. Transmission of the packets is
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Figure 4. Sample content of the Descriptor Memory during the transmission. Packet buffers 0 and 1 are already filled with the data

from the 12th set, but have not been transmitted yet. Packet buffer 2 is still being filled with the new data from set 12 (and therefore its

V flag is 0). Packet buffers 3 to 31 are filled with the data from the previous set 11. Packet buffers 3 and 4 are already transmitted and

confirmed. Packet buffer 5 is transmitted but not confirmed. Therefore the tail pointer is set to 5. After this packet is confirmed, the

tail pointer should move to position 7 (as packet 6 is already confirmed). The retr pointer circulates between the tail and retr positions,

pointing to unconfirmed (C=0) packets which should be retransmitted.

handled by the Packet Sender state machine, which works in the transmitter clock domain. Signals transmitted between

the system and transmitter clock domains are synchronized by dedicated synchronizers, and by a dual port memory. To

avoid network congestion, a special delay is introduced between transmitted packets, and this delay is adaptively changed,

as described in Section 3.2.2.

The confirmation and command packets (START, STOP, ACK) are received and parsed by the Packet Receiver state ma-

chine and the extracted information is written into the Acknowledge and commands FIFO, which assures synchronization

between the receiver clock domain (in which the Packet Receiver works), and the system clock domain.

3.2.1 Acknowledge and retransmission system

The Descriptor Manager services the Packet Buffer Memory as a circular buffer. The head pointer points to the buffer

which is filled with the data currently received from detectors and sensors. The tail pointer points to the last buffer, which

contains not yet confirmed data. Initially, the head and the tail pointers are set to 0.

When the packet buffer pointed by head is filled completely, its V flag is set to 1 (the packet is marked as ready for

transmission), and the state machines tries to move the head pointer to the next position. If this next position is pointed

by the tail pointer, it means that there are no free buffers, and reception of the new measurement data must be suspended,

until the next buffer is freed. In this situation the dta_ready signal is set to 0, and the Data Writer machine keeps waiting

until the tail pointer is moved.

If the head may be moved to the next position, the descriptor pointed by it is set to the initial state (V=0, S=0, C=0), its

set number is increased by 1, and the dta_ready signal is set to 1.

The buffer is freed, after its data are transmitted and confirmed. This task is performed by the Data Sender state

machine, which cyclically browses the section of the Descriptor Memory located between positions pointed by the head,



and tail pointers (associated with the group of packet buffers filled with the data, and at least partially not confirmed). The

third retr pointer is used to point to the buffer, which may be transmitted or retransmitted.

When the Data Sender finds a packet in the state V=1, C=0 (the S flag may be in any state, it is used only by the

network congestion avoidance algorithm, described in Section 3.2.2), it requests that the Packet Sender transmits it. After

the packets is sent, the S flag in its descriptor is set to 1. The same state machine also browses the Acknowledge and

Commands FIFO. And if it finds the confirmation of any not confirmed packet (C=0), it sets its C flag to 1. If the packet

pointed by the tail pointer is confirmed, it may be freed. The tail pointer is then moved to the next position. If the packet at

this new position is also already confirmed, the process repeats, until tail points to the packet which is either not confirmed,

or is pointed by the head pointer (the latter means, that all packets filled with the data are transmitted and confirmed).

The described mechanism cyclically retransmits packets which have not been confirmed yet. In fact it is equivalent to the

sliding-window mechanism used in TCP/IP with constant length of the window, equal to 32 packets. To avoid network and

receiver overload, the consecutive transmissions are separated with adaptively adjusted delay, as described in Section 3.2.2.

When the above described process leads to the situation where tail pointer is equal to the head pointer (all filled packets

are transmitted and confirmed), the transmission process is suspended. Example of the contents of the Descriptor Memory

during operation of the described algorithm is shown in Figure 4.

3.2.2 Avoiding of network congestion

Even though the system is supposed to work with the full duplex Ethernet network, it is possible that some packets may

be dropped by the switch when multiple FEBs connected to the same switch are sending packets at the maximum rate.

It is also possible that the receiving computer may not be able to handle and confirm all incoming packets, and may

drop some of them. Both described problems lead to the situation when some packets are unconfirmed and should be

retransmitted. However immediate retransmission of such not confirmed packet may further overload the network or the

receiving computer and further increase the risk of packet loss which results in network congestion and reduction of the

throughput.

To minimize the described problem, the system monitors the ratio between the numbers of sent packets (Cpkt sent) and

number of retransmitted packets (Cpkt rsnt) (they are distinguished by the value of the S flag, when the packets is sent or

resent). It is assumed, that if the packet is resent, it means, that either this packet, or its acknowledge packet got lost. There

are two thresholds defined (Thigh and Tlow) setting the range of acceptable lost packet ratio. If the measured ratio is below

the lower threshold Tlow, the delay between packets is decreased. If the measured ratio is above the upper threshold Thigh,

the delay between packets is increased:

if
Cpkt rsnt

Cpkt sent

> Thigh then tdel := tdel ·αincr (2)

if
Cpkt rsnt

Cpkt sent

< Tlow then tdel := tdel ·αdecr (3)

The coefficients αincr and αdecr fulfill the conditions: αdecr < 1.0 and αincr > 1.0.

This algorithm ensures, that the lost packet ratio remains in defined acceptable range. It is important that such algorithm

may be fully implemented in the FPGA, and does not require any additional communication between different FEBs

connected to the same receiving computer.

3.3 Implementation of the Linux kernel driver

To minimize latency of the packet acknowledgement, handling of the received packets has been implemented in the Linux

kernel module∗. However, as more complex operation associated with the data processing should be rather implemented

in the user space, mechanisms allowing efficient data exchange with the user space applications have been also provided.

The driver may service multiple FEBs connected via network switch to the same network interface card (NIC), or to

different NICs. The maximum number of serviced FEBs is defined, when the module is loaded, using the max_slaves

parameter.

∗In initial studies it was attempted to receive and confirm packet in the user space, using the pcap library, but the acknowledge time

was very high, and therefore the link was not used optimally



Table 2. The ioctl commands implemented in the kernel module to support communication with the user space application.

IOCTL code Description of the commands

L3_V1_IOC_SETWAKEUP Sets the number of new data which must be present in the circular buffer, before

the user space application will get woken up.

L3_V1_IOC_GETBUFLEN Returns the length of the circular buffer associated with the particular FEB.

L3_V1_IOC_READPTRS Returns the number of the available data bytes and the positions of the head and

tail pointers in the circular buffer associated with the particular FEB. Provides

necessary synchronization when accessing the pointers.

L3_V1_IOC_WRITEPTRS Should be called with the number of bytes processed by the application. Pro-

vides necessary synchronization and updates the tail pointer in the circular

buffer associated with the particular FEB.

L3_V1_IOC_STARTMAC Associates the FEB identified by the given MAC, connected to the given net-

work interface, with the particular character device, and starts the transmission

L3_V1_IOC_STOPMAC Stops the transmission from the FEB associated with the particular character

device.

For each serviced FEB a separate character device (/dev/l3_fpga0, /dev/l3_fpga1 and so on) is created. Each of those

devices is associated with a separate circular buffer, which may be mapped using the mmap function into the application

memory. Such approach minimizes overhead associated with accessing the data from the user space and is more efficient,

than using the standard socket interface. However to provide proper synchronization when buffer pointers are accessed,

and to allow suspending execution of the application when new data are not available yet, some functionalities had to

be implemented using the ioctl function. The list of implemented ioctl commands with short descriptions is provided in

Table 2.

3.4 Implementation of the circular buffer in the kernel module

Each FEB is associated with it’s own circular buffer, managed with its own head and tail pointers. The data stream is

transmitted as the continuous sequence of sets, and therefore the buffer management may be significantly simplified by

using a buffer with length equal to a multiple of set length. Such approach warrants, that each set always occupies a

contiguous area in the circular buffer. As it can be deduced from Figure 4, the packets being sent or resent at any particular

moment, belong at most to two consecutive data sets. Therefore the kernel module may remember the positions of those

sets in the circular buffer, minimizing the time needed to copy data when the DATA packet associated with one of currently

handled sets is received.

The example explaining handling of the incoming packets by the kernel module is shown in Figure 5.

When a new packet with 0xfade Ethertype is received, the driver checks if this is a command (START or STOP)

packet and if yes, appropriately starts or stops the transmission. Otherwise, it checks if this is a valid data packet. If this

is a valid and already confirmed data packet, (it means that it must have been retransmitted), the acknowledgement is sent

immediately, to handle a situation when previous acknowledgement got lost. If this is a valid data packet which has not

been confirmed yet, but it has a reasonable set number, the driver tries to copy the data from the packet to the appropriate

part of the circular buffer corresponding to the particular FEB. After copying of data is completed successfully, the packet

is marked as confirmed, and the appropriate ACK packet is sent.

Reception of packets with unexpected set numbers is considered as a symptom of serious error either in the software

or in the hardware part of the system. Therefore in such situation module signals an error to the application and sends the

STOP packet to the FEB, requesting to stop further transmission.

3.5 Minimization of the acknowledge latency

To minimize the time between reception of the packet and sending of the acknowledge packet, handling of the received

packets is implemented in the protocol handler, installed with the dev_add_pack function [20, chap. 13]. Such solution

allows to fully utilize functionality of the Network Interface Card device drivers and avoid delays associated with process-

ing of packets in the standard network stack. The protocol handler hijacks all packets with the ethertype 0xfade as soon as

they are passed to the netif_receive_skb [20, chap. 10].
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Figure 5. Handling of the received packets in the kernel module. The grayed area is the current position of the transmission window

(starting at (20,2, and ending at (21,1)). The M0 and M1 pointers reference the beginnings of the currently received sets in the circular

buffer.

When the packet (20,2) is received, its data are first copied into the circular buffer, and afterwards the ACK packet is sent. Reception of

this packet will also move the head pointer to the (20,4) position, and shift the transmission window to (20,4)-(21,3).

When the packet (20,0) is received, the ACK packet is sent immediately (this packet is already received and confirmed, probably it was

retransmitted before the FPGA received ACK, or the previous ACK got lost).

Reception of the (22,1) packet is a symptom of erroneous operation of the system. Only packets from sets 20 and 21 are expected. In

fact also delayed packets from the set 19 could be tolerated, but packet from the “future” set 22 is obviously not expected.

4. RESULTS AND DISCUSSION

The system was tested using the Dell Vostro 3750 (Intel Core i7-2630QM CPU, 2.0 GHz clock) computer running the

Debian/testing Linux OS (simulating the embedded system). Use of computer with 4-core CPU (with hyperthreading

capable cores) allowed to confirm, that the code works reliably in multiprocessor environment. The FPGA based FEBs

were simulated with three evaluation boards:

• SP601 evaluation board2 equipped with 10M/100M/1G Ethernet PHY

• Atlys board3 equipped with 10M/100M/1G Ethernet PHY

• Spartan-3E Starter Kit1 (further denoted as S3ESK) equipped with 10M/100M Ethernet PHY

The current version of the system, based on the simplified Ethernet controller driving directly the external Ethernet PHY,

was compared to the previous version, described in [16].

4.1 FPGA synthesis results

The IP core was successfully compiled for all FPGA platforms used for tests. The resources consumption for different

platforms is shown in Table 3. As can be seen, in all tested FPGAs, synthesis of our IP core leaves significant amount of

resources for another, user defined functionalities.

It is also visible, that replacement of the the OpenCores MAC core19 with the simplified core, communicating directly

with the Ethernet PHY, leads to decrease of resources consumption (by ca. 20% in case of boards with Spartan 6 chips,

and by ca 7% in case of the Spartan 3E chip).



Table 3. Results of compilation of the IP core for different platforms

Board FPGA chip
with OpenCores MAC16, 19 without MAC

Slice usage RAM usage Slice usage RAM usage

SP601 xc6slx16
501 out of

2278 (21%)

RAMB16BWER: 20

out of 32 (62%)

420 out of

2278 (18%)

RAMB16BWER: 18

out of 32 (56%)

Atlys xc6slx45
542 out of

6822 (7%)

RAMB16BWER: 20

out of 116 (17%)

426 out of

6822 (6%)

RAMB16BWER: 18

out of 116 (15%)

S3ESK xc3s500e
1355 out of

4656 (29%)

RAMB16: 20 out of

20 (100%)

1217 out of

4656 (26%)

RAMB16: 19 out of

20 (95%)

Ethernet Switch

10/100/1000 Mb/s

D-Link DGS-1008D

SP601

Atlys Spartan-3E

Starter Kit

Dell Vostro

3750
1 Gb/s

1 Gb/s
1 Gb/s

100 Mb/s

Figure 6. Test setup for throughput measurement.

4.2 Transmission tests results

The transmission tests were performed in the test setup shown in Figure 6. All tested boards were connected to the

10/100/1000 Mb/s Ethernet switch D-Link DGS-1008D,21 and each board was assigned a unique MAC address. The data

transmitted by simulated FEB were received by the user space application, which verified correctness of received data and

confirmed their processing, freeing the buffer.

The tests included:

• measurement of the throughput

• capture of packets sent and received by the computer, and analysis of the acknowledge latency and “delay” value

reported by the emulated FEBs in the data packets (using the wireshark22 tool)

The tests were performed with the 32 KiB of internal RAM in each FPGA used for packet buffers (32 packets in a

single set).

Results presented in Table 4 were obtained for parameters of the network congestion avoidance (NCA) algorithm set to

Thigh = 1/8, Tlow = 1/32, αincr = 1.25, αdecr = 0.75. The lost packet ratio was evaluated after transmission of every 10000

packets, and the delay was appropriately adjusted. The transmission speed was measured during 5 minutes to minimize

influence of initial adjustment of the inter-packet delay.

For each combination of active boards 9 measurements were performed, and both average and standard deviation of

transmission rate was calculated.



Table 4. Results of measurement of efficient transmission speed

Active boards

Measured efficient transmission speed [Mb/s]

Version with MAC (old)16, 19 Version without MAC (new)

SP601

(1 Gb/s)

Atlys

(1 Gb/s)

S3ESK

(100 Mb/s)
Total

SP601

(1 Gb/s)

Atlys

(1 Gb/s)

S3ESK

(100 Mb/s)
Total

All boards active
451.2

σ=14.4

324.5

σ=17.7

91.3

σ=1.41

867.0

σ=6.78

385.9

σ=37.4

416.0

σ=37.6

86.7

σ=0.181

888.6

σ=1.50

SP601 and Atlys active
481.2

σ=25.2

371.2

σ=32.1
– 852.4

σ=9.79

446.4

σ=29.9

461.1

σ=25.9
– 907.5

σ=4.97

SP601 and SK3E
671.9

σ=13.0
– 91.9

σ=0.596

763.8

σ=13.6

711.3

σ=4.68
– 93.4

σ=0.296

804.7

σ=4.50

Atlys and SK3E – 718,4

σ=4.41

93.9

σ=0.172

812.4

σ=4.57
– 715.2

σ=1.85

93.0

σ=0.141

808.2

σ=1.73

SP601 alone
891.9

σ=1.78
– – 891.9

σ=1.78

921.2

σ=0.264
– – 921.2

σ=0.264

Atlys alone – 883.5

σ=1.18
– 883.5

σ=1.18
– 920.7

σ=0.675
– 920.7

σ=0.675

SK3ESK alone – – 95.0

σ=0.0001

95.0

σ=0.0001
– – 94.5

σ=0.0001

94.5

σ=0.0001

Thanks to the careful adjustment of the receiving system parameters, and running the user space application with the

real-time scheduling policy at high priority, it was possible to obtain much higher throughputs than those reported in [16].

The results show, that for transmission from a single board (rows 5, 6 and 7 in Table 4), the system achieves throughput

near to the maximum throughput of the Ethernet PHY available in the particular board. Comparison of results for the new

version of the system (with simplified Ethernet controller) and for the old version of the system (with MAC controller)

shows, that removal of the MAC core and direct control of the PHY chip with a state machine resulted in increase of

achievable transmission speed in case of boards with 1Gb/s PHY (rows 5 and 6 in Table 4), which can be explained by

simplified flow of data in the FPGA without MAC. What is interesting, the transmission speed from the SK3E board,

which is equipped with the 100Mb/s PHY has slightly decreased (row 7 in Table 4). The change is very small, but clearly

visible. This effect is not explained yet and requires further analysis. Similar affect occurs also in case of simultaneous

transmission from the Atlys board and the SK3E board (row 4 in Table 4).

All results show, that the link throughput is utilized in more than 80%, which proves, that the proposed system may be

effectively used to transmit the data from FPGA to an embedded system. It can be also seen that the fluctuations of the

total bandwidth utilization is much smaller in case of the system with simplified Ethernet controller (compare values of σ

in the “Total” column in Table 4).

Unfortunately it appears that the proposed algorithm for avoidance of network congestion, does not always ensure

equal distribution of the available bandwidth between different boards (see rows 4 and 2 in Table 4, the latter only for the

old version of the system), even though it well stabilizes the total throughput. It suggests, that further research on optimum

method for avoiding of network congestion is needed.

The mean acknowledge latency measured with the wireshark tool, was equal to 3 µs, which is significantly lower then

latencies measured for the same computer using the TCP/IP protocol (see Section 2).

5. CONCLUSIONS

The presented system consisting of the simple network protocol, the optimized Linux kernel module, and the specialized

FPGA IP core, may be used to provide reliable transmission of measurement data via Ethernet link from the FPGA based



Front End Board to an embedded system, which can preprocess the data, and send them further using standard network

protocol.

Thanks to simple implementation of the FPGA IP core, and reduction of the memory requirements (due to minimization

of packet acknowledge latency in the kernel module), it is possible to transmit data even from small FPGA chips, without

necessity to use an external memory to buffer the transmitted, and not confirmed yet data.

The received data are available for the user space application through the memory mapped circular buffer, which

significantly reduces overhead associated with copying of data from the kernel space to the user space.

The software components of the system are implemented in a SMP-safe way, which allows to use them in the multi-

processor system, to increase the data processing speed.

System is capable to receive data from multiple FPGA based FEBs connected via network switch to the same Net-

work Interface Card in the receiving system, but further research on network congestion avoidance algorithm is needed to

improve distribution of bandwidth in such configuration.

Sources of the presented system are freely available under open source licenses on the OpenCores website.23
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