
Copyright 2018 Society of Photo-Optical Instrumentation Engineers.
This paper was published in Proceedings of SPIE (Proc. SPIE Vol.

10808, 108084C, DOI: http://dx.doi.org/10.1117/12.2502093) and is made
available as an electronic reprint (preprint) with permission of SPIE. One
print or electronic copy may be made for personal use only. Systematic
or multiple reproduction, distribution to multiple locations via electronic or
other means, duplication of any material in this paper for a fee or for com-
mercial purposes, or modification of the content of the paper are prohibited.

1

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10808/2502093/Implementation-of-heapsort-in-programmable-logic-with-high-level-synthesis/10.1117/12.2502093.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10808/2502093/Implementation-of-heapsort-in-programmable-logic-with-high-level-synthesis/10.1117/12.2502093.short
http://dx.doi.org/10.1117/12.2502093

Implementation of heapsort in programmable logic with High-Level

Synthesis

Wojciech M. Zabołotnya

aInstitute of Electronic Systems, Warsaw University of Technology, ul. Nowowiejska 15/19,

00-665 Warszawa, Poland

ABSTRACT

The paper presents the implementation of the streaming heapsort algorithm using the High-Level Synthesis (HLS). Results

of synthesis in different configurations are compared with the reference implementation based on heavily optimized HDL

code. Obtained results are used for evaluation of High-Level Synthesis as a method of implementation of data processing

algorithms.

Keywords: HLS, FPGA, Heapsort, Sorting in hardware, VHDL

1. INTRODUCTION

Implementation of signal or data processing algorithms in FPGA is a difficult task. To fully utilize the potential of the

hardware, it is usually necessary to decompose the problem into smaller tasks, that may be executed in parallel. To

minimize the storage requirements and to maximize the throughput, it is desired that different processing subsystems are

implemented in pipelined architectures, and further proper synchronization of results may be a time-consuming and error-

prone job.1 Therefore, implementing algorithms in FPGAs is considered to be a more demanding task, than implementing

them in software.

The High-Level Synthesis is a method of automated translation of the algorithms written in common programming

languages, like C or C++ into the HDL description ready for FPGA implementation. If successful, that methodology

offers much faster and simpler testing of algorithms in C programs. The aim of this paper is to check the applicability of

the High-Level Synthesis offered by Xilinx in the Vivado suite2, 3 for conversion of data-processing algorithms into HDL

implementation. As the test case, the streaming heapsort algorithm was selected, because of its simple description in C

language and availability of open source highly optimized and parametrized HDL version.4, 5

2. STREAMING HEAPSORT ALGORITHM

In data acquisition systems, it often happens that the timestamped data arriving from different sources are not perfectly

time-sorted. The data concentrating node is then responsible for time-sorting of such stream. Let us consider the data

stream consisting of a series of records. Let us denote the timestamp of the k
th record as tk. The stream of length K is

sorted if ∀n ∈ Z∩ [1,K − 1] : tk+1 ≥ tk. That definition creates certain problems for the streams of arbitrary length. The

timestamp is always stored in a finite number of bits. Therefore for long streams, the timestamp periodically wraps around.

It forces us to use the special “local” definitions of the comparison function. If the timestamp is encoded in N bits, then it

may store values between 0 and 2N −1, and to calculate the differences between the timestamps, we must use the modular

arithmetic with modulus 2N . Then we may define our own "greater than" and "less than" operators:

a > b (mod 2N)
def
⇐⇒ a−b (mod 2N)< 2N−1 (1)

a < b (mod 2N)
def
⇐⇒ a−b (mod 2N)≤ 2N−1 (2)

Further author information: (Send correspondence to W.M.Z.)

W.M.Z.: E-mail: wzab@ise.pw.edu.pl, Telephone: +48 22 234 6693

Layer 0

Layer 1

Layer 2

Layer 3

T

RL

R

R

L

L

T

T

SC

SC

TCInput data Output data

SC

SC

T

L R

T 6 L

T 6 R

No action, no

notification sent

downwards.

SC

T

L R

L < T

L 6 R

L swapped

with T. Notifi-

cation is sent

to lower SC.

SC

T

L R

R < T

R < L

R swapped

with T. Notifi-

cation is sent

to lower SC.

Figure 1: Implementation of the streaming heap sorter.4 The top node controller (TC) compares the input data with the

data at the top of the heap. If the input data is “older”, it is transferred directly to the output. Otherwise, it replaces the data

at the top. Each sorter node controller (SC) is notified if its top data (T) is changed. If the new T data is “newer” than L or

R data, those data are swapped, and the next SC is notified of the change.

The disorder in the stream may be characterized with the “maximum distance between unsorted data records”, defined as

follows:4

Dmax

def
= max{d ∈ Z∩ [1,K −1] : ∃k ∈ Z∩ [1,K −d] : tk+d < tk} (3)

To sort the stream with certain Dmax, the sorter must remember at least Dmax previous records, because that’s the maximum

number of “later” records that may precede the “delayed” newly received record in the unsorted data stream. The heapsort

algorithm in the streaming version is optimal in that sense that the heap sorter with the storage capacity of M words is able

to sort the stream with Dmax = M. The heapsort algorithm may also be efficiently parallelized. The article [4] presents the

concept and the implementation of heapsort in VHDL, where the new data record may be handled every two clock periods*.

A simplified version of that sorter† was created and used as a reference for the results produced by the HLS-based approach.

3. TEST PLATFORM

The tests were performed using Vivado 2017.4 and Vivado HLS 2017.4. As the target platform, the Zynq 7 chip XC7Z020-

CLG400-1C was selected (e.g., used in the Z-Turn board6). The analysis was performed for the records containing 16-bit

timestamps and 32-bit payload. It was assumed, that the sorter will contain 11 layers, and therefore it should be able to sort

the streams with Dmax = 212 −1 = 4095. However, the code is parametrized and may be easily modified for other formats

of data.

4. IMPLEMENTATION OF HEAP SORTER WITH HLS

The initial simplest implementation was prepared for short streams, so timestamp (the “key” field in the “sort_data” struc-

ture) was coded as a signed short integer, and standard comparisons were used. The heap is implemented in a single vector,

where layer N occupies the locations between 2N and 2N+1 −1. The code implementing that version of heapsort is shown

in Figure 2.

Unfortunately, HLS synthesis of that code gives very poor results. Both the “initialization interval” (II - the number

of clock periods between the new records) and the latency (the number of clock periods between reception of data and

availability of results) varies between 4 and 62 clock periods (see Table 1, row 1). That is caused by the fact, that HLS by

default uses the “DATAFLOW” implementation, where the processing time may depend on data. For the pipelined systems

another version of the algorithm, with constant initialization interval and constant latency is needed. Additionally, the

input and output interfaces should be defined so that the records are transmitted as bit vectors with minimalistic handshake

*The sources of that sorter are available at [5].
†The special flags “init” and “valid” were removed from the data records.

>>>> wz_hsort.h <<<<

typedef struct {

short int key;

char payload[4];

} sort_data;

#define NM 11

#define SORT_LEN (1<<NM)

#define MAX_DEL (SORT_LEN)

#define TEST_LEN (MAX_DEL*10)

extern sort_data sort_mem[SORT_LEN];

sort_data heap_sort(sort_data val);

>>>> wz_hsort.cc <<<<

#include <stdint.h>

#include <stdio.h>

#include <string.h>

#include "wz_hsort.h"

sort_data sort_mem[SORT_LEN];

sort_data heap_sort(sort_data val)

{

sort_data res;

sort_data cur = val;

int lev, offs, top, left, right;

cur = sort_mem[1];

if (val.key <= cur.key)

return val; //No need to update the heap

else {

res = cur;

cur = val;

offs = 0;

for (lev = 1; lev <= NM; lev++) {

top = (1 << (lev - 1)) + offs;

left = (2 << (lev - 1)) + offs;

right = (3 << (lev - 1)) + offs;

if ((lev == NM) ||

((cur.key <= sort_mem[left].key) &&

(cur.key <= sort_mem[right].key))) {

sort_mem[top] = cur;

break;

} else if ((sort_mem[left].key < cur.key) &&

(sort_mem[left].key <=

sort_mem[right].key)) {

sort_mem[top] = sort_mem[left];

} else if (sort_mem[right].key < cur.key) {

sort_mem[top] = sort_mem[right];

offs += (1 << (lev - 1));

} else {

printf("impossible!!!\n");

}

}

}

return res;

}

Figure 2: The simplest implementation of the heap sorter. The “for” loop implements the SC nodes from Figure 1. The

“cur” variable transfers the address of the updated data. The timestamp is stored in the “key” field in the “sort_data”

structure. To simplify the implementation, the timestamp is of “short signed integer” type, and standard comparisons are

used. Such solution works correctly for short streams, where timestamp does not wrap.

signals. Therefore, the code must be supplemented with special HLS pragmas at the beginning of the heap_sort function

body:

#pragma HLS PIPELINE II=2

#pragma HLS INTERFACE ap_hs port=val

#pragma HLS DATA_PACK variable=val

#pragma HLS INTERFACE ap_ctrl_hs port=return

#pragma HLS DATA_PACK variable=return

Such modification results in constant initialization interval, and constant latency, but their values are unacceptable: L=59,

II=60 (see Table 1, row 2). The bottleneck is a single memory used to store the data records. To increase the data bandwidth,

it is desirable to divide that memory into smaller independent memories for individual layers of the sorter. The required

size of memory depends on the layer. The N
th layer needs to store 2N data records. Unfortunately, HLS does not support

such non-uniform partitioning of memories [7,8]. In VHDL the “for-generate” statement may be used to generate a set

of memories with different sizes, and that approach was used in the implementation described in [4]. In the subset of C

and C++ used by HLS, unfortunately, it is not possible to build such structure. Therefore it is necessary to declare the

two-dimensional array with the number of rows equal to the number of layers and the number of columns equal to the size

of memory required by the last layer‡.

The resulting code is shown in Figure 3. That implementation resulted in improved II=12 (see Table 1, row 3), but

it is still not satisfactory. The thorough analysis of the results, has shown that the loops were not properly parallelized

(“unrolled”), even though the appropriate message was produced in the log file. The proper parallelization of loops requires

that the number of iterations is constant. Therefore, leaving the loop with conditional “break” is not acceptable. To work

it around, the special “enable” variable had to be added, that allows using the constant number of iterations, but disables

any actions in iterations after the former break condition was true. The modified code is shown in Figure 4. The obtained

II was equal to 4 (see Table 1, row 4), which is still higher than achieved in the reference HDL code.

‡The non-used memory location should be later on detected by the synthesis tools and eliminated.

>>>> wz_hsort.h <<<<

typedef struct {

short int key;

char payload[4];

} sort_data;

#define NM 11

#define SORT_LEN (1<<NM)

#define MAX_DEL (SORT_LEN)

#define TEST_LEN (MAX_DEL*10)

extern sort_data sort_mem[NM][SORT_LEN];

sort_data heap_sort(sort_data val);

>>>> wz_hsort.cc <<<<

#include <stdint.h>

#include <stdio.h>

#include <string.h>

#include "wz_hsort.h"

sort_data sort_mem[NM][SORT_LEN];

sort_data heap_sort(sort_data val)

{

#pragma HLS PIPELINE II=2

#pragma HLS INTERFACE ap_hs port=val

#pragma HLS DATA_PACK variable=val

#pragma HLS INTERFACE ap_ctrl_hs port=return

#pragma HLS DATA_PACK variable=return

#pragma HLS ARRAY_PARTITION variable=sort_mem dim=1

sort_data res;

sort_data cur = val;

int lev, offs, top, left, right;

cur = sort_mem[0][0];

if (val.key <= cur.key)

return val; //No need to update the heap

else {

res = cur;

cur = val;

offs = 0;

for (lev = 1; lev <= NM; lev++) {

top = offs;

left = offs;

right = (1 << (lev - 1)) + offs;

if ((lev == NM) ||

((cur.key <= sort_mem[lev][left].key) &&

(cur.key <= sort_mem[lev][right].key))) {

sort_mem[lev - 1][top] = cur;

break;

} else if ((sort_mem[lev][left].key < cur.key) &&

(sort_mem[lev][left].key <=

sort_mem[lev][right].key)) {

sort_mem[lev - 1][top] = sort_mem[lev][left];

} else if (sort_mem[lev][right].key < cur.key) {

sort_mem[lev - 1][top] = sort_mem[lev][right];

offs += (1 << (lev - 1));

} else {

printf("impossible!!!\n");

}

}

}

return res;

}

Figure 3: The HLS implementation of the heap sorter with partitioned memory. The two-dimensional array is split into

parts used as memories for individual layers.

>>>> wz_hsort.h <<<<

typedef struct {

short int key;

char payload[4];

} sort_data;

#define NM 11

#define SORT_LEN (1<<NM)

#define MAX_DEL (SORT_LEN)

#define TEST_LEN (MAX_DEL*10)

extern sort_data sort_mem[NM][SORT_LEN];

sort_data heap_sort(sort_data val);

>>>> wz_hsort.cc <<<<

#include <stdint.h>

#include <stdio.h>

#include <string.h>

#include "wz_hsort.h"

sort_data sort_mem[NM][SORT_LEN];

sort_data heap_sort(sort_data val)

{

#pragma HLS PIPELINE II=2

#pragma HLS INTERFACE ap_hs port=val

#pragma HLS DATA_PACK variable=val

#pragma HLS INTERFACE ap_ctrl_hs port=return

#pragma HLS DATA_PACK variable=return

#pragma HLS ARRAY_PARTITION variable=sort_mem dim=1

sort_data res;

sort_data cur = val;

int lev, offs, top, left, right, enable;

cur = sort_mem[0][0];

if (val.key <= cur.key)

return val; //No need to update the heap

else {

res = cur;

cur = val;

offs = 0;

enable = 1;

for (lev = 1; lev <= NM; lev++) {

top = offs;

left = offs;

right = (1 << (lev - 1)) + offs;

if (enable) {

if ((lev == NM) ||

((cur.key <= sort_mem[lev][left].key) &&

(cur.key <= sort_mem[lev][right].key))) {

sort_mem[lev - 1][top] = cur;

enable = 0;

} else if ((sort_mem[lev][left].key < cur.key) &&

(sort_mem[lev][left].key <=

sort_mem[lev][right].key)) {

sort_mem[lev - 1][top] = sort_mem[lev][left];

} else if (sort_mem[lev][right].key < cur.key) {

sort_mem[lev - 1][top] = sort_mem[lev][right];

offs += (1 << (lev - 1));

} else {

printf("impossible!!!\n");

}

}

}

}

return res;

}

Figure 4: The HLS implementation of the heap sorter with properly unrolled loops.

>>>> wz_hsort.h <<<<

typedef struct {

short unsigned int key;

char payload[4];

} sort_data;

int inline kcmp(short unsigned int v1,

short unsigned int v2)

{

#pragma HLS LATENCY min=0 max=0

if (v1 == v2)

return 0;

if ((v1 - v2) & (1 << 15))

return -1;

return 1;

}

#define NM 11

#define SORT_LEN (1<<NM)

#define MAX_DEL (SORT_LEN)

#define TEST_LEN (MAX_DEL*100)

extern sort_data sort_mem[NM][SORT_LEN];

sort_data heap_sort(sort_data val);

>>>> wz_hsort.cc <<<<

#include <stdint.h>

#include <stdio.h>

#include <string.h>

#include "wz_hsort.h"

sort_data sort_mem[NM][SORT_LEN];

sort_data heap_sort(sort_data val)

{

#pragma HLS PIPELINE II=2

#pragma HLS INTERFACE ap_hs port=val

#pragma HLS DATA_PACK variable=val

#pragma HLS INTERFACE ap_ctrl_hs port=return

#pragma HLS DATA_PACK variable=return

#pragma HLS ARRAY_PARTITION variable=sort_mem dim=1

sort_data res;

sort_data cur = val;

int lev, offs, top, left, right, enable;

cur = sort_mem[0][0];

if (kcmp(val.key, cur.key) <= 0)

return val; //No need to update the heap

else {

res = cur;

cur = val;

offs = 0;

enable = 1;

for (lev = 1; lev <= NM; lev++) {

top = offs;

left = offs;

right = (1 << (lev - 1)) + offs;

if (enable) {

if ((lev == NM) ||

((kcmp(cur.key, sort_mem[lev][left].key) <= 0)

&& (kcmp(cur.key, sort_mem[lev][right].key) <=

0))) {

sort_mem[lev - 1][top] = cur;

enable = 0;

} else

if ((kcmp(sort_mem[lev][left].key, cur.key) < 0)

&& (kcmp(sort_mem[lev][left].key,

sort_mem[lev][right].key) <= 0)) {

sort_mem[lev - 1][top] = sort_mem[lev][left];

} else

if (kcmp(sort_mem[lev][right].key, cur.key) < 0) {

sort_mem[lev - 1][top] = sort_mem[lev][right];

offs += (1 << (lev - 1));

} else {

printf("impossible!!!\n");

}

}

}

}

return res;

}

Figure 5: The HLS implementation of the heap sorter supporting continuous streams with timestamp implemented as

“unsigned short integer”, and the separate function for timestamp comparison.

The obtained results were good enough to introduce the support for continuous streams, as described in section 2. To

achieve that, the type of the timestamp field (“key”) was changed to "short unsigned int", and the appropriate comparison

function was created (see Figure 5). Unfortunately, these simple changes resulted in significant increase of II - to 9 cycles

(see Table 1, row 5). Even when the function was declared as inline (with “#pragma HLS INLINE”) or having zero latency

(with “#pragma HLS LATENCY min=0 max=0”), the II remained equal to 9.

The proper solution was found after multiple further tests and experiments. Replacement of the function with the two

macros (the first one for “<” and the second one for “6”) provided the required functionality without increasing of the

initialization interval. The corrected code, working with II=3 clock periods (see Table 1, row 6) is shown in Figure 6.

It is interesting that HLS can achieve II=3 with a single memory used in each layer. The reference implementation uses

two separate memories in each layer, to minimize the time needed to access “L” and “R” values. The same approach was

tried in the HLS-based solution (see Figure 7), to check if further improvement of II may be achieved. Unfortunately, the

above modification didn’t reduce II to the desired level of 2 clock periods (see Table 1, row 7).

5. TESTS OF HLS-SYNTHESIZED DESIGNS IN SIMULATION

All HLS-synthesized designs were tested in simulations. Unfortunately, the original “RTL/C cosimulation” in Vivado HLS

didn’t work, but the produced VHDL RTL code was compatible with typical VHDL simulators. The dedicated testbench

in VHDL was written that read the input data records from the file and wrote the output data to another file. The input data

were generated with a Python script, and the output data were checked with another Python script to verify the correctness

of the sorting. The simulations were performed with GHDL simulator,9, 10 and they have proven the correct operation

of the generated sorters. In particular, it was verified, that sorting is correct for data streams with Dmax below the sorter

>>>> wz_hsort.h <<<<

typedef struct {

short unsigned int key;

char payload[4];

} sort_data;

#define klt(v1,v2) ((v1-v2) & 0x8000)

#define kle(v1,v2) (((v2-v1) & 0x8000)==0)

#define NM 11

#define SORT_LEN (1<<NM)

#define MAX_DEL (SORT_LEN)

#define TEST_LEN (MAX_DEL*100)

extern sort_data sort_mem[NM][SORT_LEN];

sort_data heap_sort(sort_data val);

>>>> wz_hsort.cc <<<<

#include <stdint.h>

#include <stdio.h>

#include <string.h>

#include "wz_hsort.h"

sort_data sort_mem[NM][SORT_LEN];

sort_data heap_sort(sort_data val)

{

#pragma HLS PIPELINE II=2

#pragma HLS INTERFACE ap_hs port=val

#pragma HLS DATA_PACK variable=val

#pragma HLS INTERFACE ap_ctrl_hs port=return

#pragma HLS DATA_PACK variable=return

#pragma HLS ARRAY_PARTITION variable=sort_mem dim=1

#pragma HLS DATA_PACK variable=sort_mem

sort_data res;

sort_data cur = val;

int lev, offs, top, left, right, enable;

cur = sort_mem[0][0];

if (kle(val.key, cur.key))

return val; //No need to update the heap

else {

res = cur;

cur = val;

offs = 0;

enable = 1;

for (lev = 1; lev <= NM; lev++) {

top = offs;

left = offs;

right = (1 << (lev - 1)) + offs;

if (enable) {

if ((lev == NM) ||

(kle(cur.key, sort_mem[lev][left].key)

&& kle(cur.key, sort_mem[lev][right].key))) {

sort_mem[lev - 1][top] = cur;

enable = 0;

} else if (klt(sort_mem[lev][left].key, cur.key)

&& kle(sort_mem[lev][left].key,

sort_mem[lev][right].key)) {

sort_mem[lev - 1][top] = sort_mem[lev][left];

} else if (klt(sort_mem[lev][right].key, cur.key)) {

sort_mem[lev - 1][top] = sort_mem[lev][right];

offs += (1 << (lev - 1));

} else {

printf("impossible!!!\n");

}

}

}

}

return res;

}

Figure 6: The HLS implementation of the heap sorter with macros used to implement comparisons in modular arithmetics.

Version Description
Latency Initialization Interval Predicted resource usage

min max min max BRAM FF LUT

1
Initial version with

“DATAFLOW” architecture
4 62 4 62 6 339 1105

2
Version with “PIPELINE”

architecture
59 59 60 60 6 966 3145

3
Version with separate

memory for each layer
15 15 12 12 66 881 4222

4
Version with properly

unrolled loops
14 14 4 4 66 1285 4572

5
Initial version with support

for continuous stream
44 44 9 9 68 1669 5048

6
Version with comparison

implemented in macros
11 11 3 3 70 731 2562

7
Version with separate “L”

and “R” memories
11 11 3 3 67 730 3504

Table 1: Results of HLS-synthesis of the streaming heap sorter. The reported resource usage is only the preliminary value

predicted by the HLS tool.

>>>> wz_hsort.h <<<<

typedef struct {

short unsigned int key;

char payload[4];

} sort_data;

#define klt(v1,v2) ((v1-v2) & 0x8000)

#define kle(v1,v2) (((v2-v1) & 0x8000)==0)

#define NM 11

#define SORT_LEN (1<<NM)

#define MAX_DEL (SORT_LEN)

#define TEST_LEN (MAX_DEL*100)

extern sort_data l_smem[NM][SORT_LEN / 2];

extern sort_data r_smem[NM][SORT_LEN / 2];

sort_data heap_sort(sort_data);

>>>> wz_hsort.cc <<<<

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "wz_hsort.h"

sort_data l_smem[NM][SORT_LEN / 2] = { 0, };

sort_data r_smem[NM][SORT_LEN / 2] = { 0, };

sort_data heap_sort(sort_data val)

{

#pragma HLS INTERFACE ap_hs port=val

#pragma HSL INTERFACE ap_hs port=return

#pragma HLS DATA_PACK variable=val

#pragma HLS DATA_PACK variable=return

#pragma HLS DATA_PACK variable=l_smem

#pragma HLS DATA_PACK variable=r_smem

#pragma HLS PIPELINE II=2

#pragma HLS ARRAY_PARTITION variable=l_smem complete dim=1

#pragma HLS ARRAY_PARTITION variable=r_smem complete dim=1

#pragma HLS UNROLL

sort_data res;

sort_data cur = val;

int tmp;

int lev;

int shift;

int offs = 0;

int enable;

cur = r_smem[0][0];

if (kle(val.key, cur.key))

return val; //No need to update the heap

else {

res = cur;

cur = val;

offs = 0;

enable = 1;

for (lev = 1; lev <= NM; lev++) {

shift = 0;

if (lev >= 2)

shift = 1 << (lev - 2);

if (enable) {

if ((lev == NM)

|| (kle(cur.key, l_smem[lev][offs].key)

&& kle(cur.key, r_smem[lev][offs].key))) {

if (offs < shift)

l_smem[lev - 1][offs] = cur;

else

r_smem[lev - 1][offs - shift] = cur;

enable = 0;

} else if (enable

&& klt(l_smem[lev][offs].key, cur.key)

&& kle(l_smem[lev][offs].key,

r_smem[lev][offs].key)) {

if (offs < shift)

l_smem[lev - 1][offs] = l_smem[lev][offs];

else

r_smem[lev - 1][offs - shift] =

l_smem[lev][offs];

} else if (klt(r_smem[lev][offs].key, cur.key)) {

if (offs < shift)

l_smem[lev - 1][offs] = r_smem[lev][offs];

else

r_smem[lev - 1][offs - shift] =

r_smem[lev][offs];

offs += (1 << (lev - 1));

} else {

printf("impossible!!!\n");

}

}

}

}

return res;

}

Figure 7: The HLS implementation of the heap sorter with split memories.

Resource

Reference design

with “bypass”

channels (II=2)

Reference design

without “bypass”

channels (II=3)

HLS-generated

sorter without split

memories

HLS-generated

sorter with split

memories

Slice LUTs 4235 (7.96%) 3528 (6.63%) 1259 (2.37%) 1803 (3.39%)

Slice Registers 1420 (1.33%) 875 (0.82%) 649 (0.61%) 691 (0.65%)

RAMB36 20 (14.29%) 20 (14.29%) 30 (21.43%) 2 (1.43%)

RAMB18 20 (7.14%) 20 (7.14%) 2 (0.71%) 40 (14.29%)

Table 2: Results of synthesis of the streaming heap sorter basing on the handwritten VHDL implementation and the HDL

code generated by Vivado HLS from the C/C++ source.

capacity and incorrect for Dmax above the sorter capacity. The sorters capable of processing the continuous streams were

successfully tested with streams of length significantly longer than the wrap-around period of the timestamp.

6. RESULTS OF THE FULL COMPILATION OF HLS-GENERATED SORTER

The last two versions of the HLS-synthesized sorter (rows 6 and 7 in Table 1) were compiled to the FPGA bitstream using

the Vivado toolkit. The resource consumption in the XC7Z020-CLG400-1C FPGA is shown in Table 2. For comparison

also two versions of the simplified reference design were compiled for the same FPGA. The first one uses a special “bypass”

channels4 to avoid conflicts at simultaneous access to the memories and allows to achieve II=2 (unfortunately, HLS was

not able to generate such solution). The second one was compiled with disabled “bypass” channels and was similar with

the HLS-generated version with separate memories. All compiled designs were able to work at the clock frequency of

80 MHz on the selected FPGA chip. It can be seen that the final resource consumption of the HLS-synthesized code is

significantly smaller than the predicted values from Table 1. It also appears that the HLS-synthesized code uses even fewer

resources than the handwritten VHDL code.

7. RESULTS AND CONCLUSIONS

The HLS methodology allowed implementing the streaming heap sorter with reasonable parameters. The source code in

C/C++ describing the algorithm for the HLS-based implementation is much simpler than the handwritten VHDL source

code. It is also easier to understand for somebody who has less experience with programming FPGAs.

On the other hand, however, the HDL code generated by the HLS is almost illegible for an engineer. Therefore, in

case of problems, it is difficult to investigate possible bugs in the generated implementation. However, similarly, we could

complain that the assembly code generated by the optimizing C/C++ compiler is difficult to analyze and compare with the

original high-level code.

A significant advantage of the HLS is that it was able to automatically implement the solution with initialization

interval equal to 3 clock periods without the manual splitting the memories into “left” and “right” parts, that was necessary

in the reference solution. However, it must be emphasized, that the carefully optimized HDL code still provides better

performance (II=2 instead of II=3) than the HLS-generated one. Attempts to describe the “bypass channels” used in [4] in

an HLS-compatible way to decrease the II to 2 clock periods up to know were unsuccessful.

Another finding is that the HLS tools are very sensitive to the constructions used in the source code. Functionally

equivalent solutions used for timestamp comparison resulted in the significant difference of performance (achievable II

equal to either 9 or 3 clock periods). The HLS tools not always correctly report problems detected during the synthesis.

The problem found in the tests was that certain situations disabling the required optimizations (usage of “break” inside the

“for” loop) do not generate the appropriate warning.

HLS seems to be a promising technology for quick implementation of data processing algorithms in FPGA. In case of

the heapsort algorithm, it produced solutions in certain aspects (resource usage) better than the handwritten VHDL code.

However, efficient usage of the HLS still requires an engineer who understands possibilities and limitations of the FPGA

technology. To achieve good results, it was necessary to discover the need of partitioning of the heap memory and to

implement it reasonably.

Application of HLS to the problems that already have the HDL-coded solutions may help to discover new optimization

possibilities. The results obtained in the paper show that the existing VHDL implementation of the heap sorter should be

reviewed regarding its resource consumption.

ACKNOWLEDGMENTS

Work supported by statutory funds of Institute of Electronic Systems.

REFERENCES

[1] Zabołotny, W. M., “Automatic latency equalization in VHDL-implemented complex pipelined systems,”

Proc.SPIE 10031, 10031 – 10031 – 12 (2016).

[2] Xilinx, “Vivado design suite user guide, high-level synthesis.” https://www.xilinx.com/products/

design-tools/vivado/integration/esl-design.html .

[3] Xilinx, “Vivado design suite tutorial,” (2017). https://www.xilinx.com/support/documentation/

sw_manuals/xilinx2017_4/ug871-vivado-high-level-synthesis-tutorial.pdf .

[4] Zabołotny, W. M., “Dual port memory based Heapsort implementation for FPGA,” Proc.SPIE 8008, 8008 – 8008 – 9

(2011).

[5] Zabołotny, W. M., “Heap sorter for fpga,” (2012). https://opencores.org/project/heap_sorter .

[6] MYIR Tech, “Z-turn board.” http://www.myirtech.com/list.asp?id=502 .

[7] Xilinx, “Vivado HLS optimization methodology guide,” (2017). https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2017_4/ug1270-vivado-hls-opt-methodology-guide.pdf .

[8] Xilinx, “Vivado design suite user guide, high-level synthesis,” (2017). https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2017_4/ug871-vivado-high-level-synthesis-tutorial.pdf .

[9] Gingold, T., “GHDL main/home page,” (2017). http://ghdl.free.fr/ .

[10] Gingold, T. and Lehmann, P., “GHDL: VHDL 2008/93/87 simulator.” https://github.com/ghdl/ghdl .

https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug871-vivado-high-level-synthesis-tutorial.pdf
https://opencores.org/project/heap_sorter
https://opencores.org/project/heap_sorter
http://www.myirtech.com/list.asp?id=502
http://www.myirtech.com/list.asp?id=502
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1270-vivado-hls-opt-methodology-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1270-vivado-hls-opt-methodology-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1270-vivado-hls-opt-methodology-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug871-vivado-high-level-synthesis-tutorial.pdf
http://ghdl.free.fr/
http://ghdl.free.fr/
https://github.com/ghdl/ghdl
https://github.com/ghdl/ghdl

	INTRODUCTION
	Streaming heapsort algorithm
	Test platform
	Implementation of heap sorter with HLS
	Tests of HLS-synthesized designs in simulation
	Results of the full compilation of HLS-generated sorter
	RESULTS AND CONCLUSIONS

