
Copyright 2013 Society of Photo-Optical Instrumentation Engineers.
This paper was published in Proceedings of SPIE (Proc. SPIE Vol. 8903,

89031M, DOI: http://dx.doi.org/10.1117/12.2033279 ) and is made avail-
able as an electronic reprint (preprint) with permission of SPIE. One print
or electronic copy may be made for personal use only. Systematic or mul-
tiple reproduction, distribution to multiple locations via electronic or other
means, duplication of any material in this paper for a fee or for commercial
purposes, or modification of the content of the paper are prohibited.

1

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1763153
http://dx.doi.org/10.1117/12.2033279


Tethered Forth system for FPGA applications

Paweł Goździkowskia and Wojciech M. Zabołotnyb

aInstitute of Computer Science, Warsaw University of Technology, ul. Nowowiejska 15/19,

00-665 Warszawa, Poland
bInstitute of Electronic Systems, Warsaw University of Technology, ul. Nowowiejska 15/19,

00-665 Warszawa, Poland

ABSTRACT

This paper presents the tethered Forth system dedicated for testing and debugging of FPGA based electronic systems. Use

of the Forth language allows to interactively develop and run complex testing or debugging routines. The solution is based

on a small, 16-bit soft core CPU, used to implement the Forth Virtual Machine. Thanks to the use of the tethered Forth

model it is possible to minimize usage of the internal RAM memory in the FPGA. The function of the intelligent terminal,

which is an essential part of the tethered Forth system, may be fulfilled by the standard PC computer or by the smartphone.

System is implemented in Python (the software for intelligent terminal), and in VHDL (the IP core for FPGA), so it can

be easily ported to different hardware platforms. The connection between the terminal and FPGA may be established and

disconnected many times without disturbing the state of the FPGA based system. The presented system has been verified

in the hardware, and may be used as a tool for debugging, testing and even implementing of control algorithms for FPGA

based systems.

Keywords: FPGA, Forth, CPU, Tethered Forth

1. INTRODUCTION

FPGA chips are widely used to build systems with complex functionalities. Control and testing of such systems often

requires complex procedures, which are difficult to implement in standard state machines in FPGA, but can be easily

implemented in a software executed by a CPU.

There are a few options to provide a FPGA based system with CPU functionalities The first one is to use an external

microcontroller connected to the FPGA. However in this approach we either must use many FPGA pins to connect it to the

CPU bus, or we have to use the serial connection, which impairs efficiency of communication between the CPU and the

FPGA∗.

Another possibility is to use an FPGA with embedded CPU core. This solution is available in a few FPGA families.

Just to mention a few examples: the older ones - Altera Excalibur,1 Xilinx Virtex 5,2 and the new ones - Xilinx Zynq

7000,3 and Altera Cyclone V4 or Arria V.5 Such embedded CPU offers perfect communication with synthesized IP cores

in the FPGA (e.g. via the AMBA AXI6 bus in the newer families). The only problem is that FPGAs with embedded CPU

are the relatively expensive ones.

Finally, we can use the so called “soft core” CPU, which is described in HDL language, and synthesized just as other

digital blocks in the FPGA chip. There exist many solutions of soft core CPUs, ranging from simple 8-bit (e.g. clones of

the popular Z807) to serious 32-bit CPUs with MMU (e.g. the OpenRisc 12008) or even 64-bit CPUs like OpenSPARC

T1.9

Main disadvantage of the “soft core” CPU is that it typically consumes significant amount of FPGA resources for the

CPU logic and significant amount of memory for it’s program. Therefore for our purpose we need a small, but efficient

CPU.

Further author information: (Send correspondence to W.M.Z.)

W.M.Z.: E-mail: wzab@ise.pw.edu.pl, Telephone: +48 22 234 7717
∗There are available serial interfaces well suited for implementation of high speed bus, like e.g. PCI Express, but they are available

only in relatively expensive FPGAs and CPUs, so we do not take them into consideration in this paper



Yet another factor affecting the choice of right solution is the fact, that testing and debugging often should be done

interactively. The operator may need to create new testing procedures, on top of the previously defined ones, and to

execute them without changing the state of the debugged system. In case of the typical CPU, where we must to write

program, compile it, load to the CPU memory and start the program, it may be difficult to achieve.

So the right testing and debugging solution should be a system based on small but efficient CPU, able to work interac-

tively. The perfect candidate for this purpose seems to be the Forth virtual machine running on a simple CPU.

2. FORTH LANGUAGE

The Forth language10 in typical implementations offers good performance at moderate memory consumption, perfect

extendability and possibility of interactive work. It may be implemented on a CPU with very limited instruction set. The

Forth offers two modes of operation - the interactive mode and the compilation mode. In the interactive mode we can

execute defined commands (which in Forth are called simply words). In the compilation mode we can define a new word,

using previously defined ones. During one session we can switch between these two modes multiple times, alternately

creating the program and testing it.

The Forth CPU must be able two handle two stacks - the data stack and the return stack. The data stack is the main place

where the data are stored. The return stack stores the return addresses during subroutine calls (used e.g. when definition

of one word uses some previously defined words). Another data structure essential for operation of the Forth system is the

dictionary, which stores the names and definitions of words.

For most programmers Forth seems to be an exotic programming language, due to very specific syntax, related to the

fact that when calling a word, the arguments must be pushed to the stack first and only then the appropriate word may be

called. In practice it means, that the arithmetic calculations must be described in the Reverse Polish Notation (RPN).

Forth offers also words allowing to implement different loops and conditional instructions, which makes it a powerful

environment for writing and executing programs on small systems.

2.1 Existing Forth solutions

There are many implementations of Forth available today. Probably one of the most popular is the gforth,11 which may

run on standard PC computers. From our point of view the most interesting projects are Forth implementations, which may

run on small systems.

For example the AmForth12 is able to run on small 8-bit AVR8 microcontrollers13 produced by Atmel.14 It may work

even on very small ATmega168 microcontroller equipped with 16 KiB of FLASH and 1 KiB of RAM. By connecting

a terminal (PC, smartphone or dedicated terminal) to a serial port of the AVR8 microcontroller we obtain the system

allowing to develop and run Forth programs. There is also a possibility to define the special Forth word, which will be

executed automatically, after the CPU starts. So the system may work autonomously, when no terminal is connected, and

interactively, after connection of the terminal.

As we are looking for solutions suitable for a FPGA based system, it is worth to take a look at the J1,15, 16 which is

implemented in FPGA, with source code consisting of only 200 lines of Verilog, and is able to execute up to 100 million

Forth words per second. The CPU itself implements only five basic instructions (literal, jump, conditional jump, call, ALU

operation), but some of them have a few variants (e.g. depending on the location of operands). J1 is a very interesting

solution, however from our point of view it has one significant disadvantage – it doesn’t offer possibility of interactive

work. The program for J1 must be written and compiled in advance, and put into the program memory located in internal

RAM in FPGA.

If we try to add the interactive work functionality to the FPGA based Forth system, we find, that words responsible for

compilation are rather the complex ones and occupy a lot of space in the dictionary, and that the names of words also occupy

significant amount of space in the dictionary. Problem of limited memory occurs also in the world of microcontrollers,

and an example of successful solution of this problem may be a Riscy Pygness17 – a Forth implementation for ARM

microprocessors. To avoid the mentioned problems, Riscy Pygness uses so called “tethered Forth model”, described in the

next section.

In our work we attempt to combine advantages of small, specialized CPU implemented in FPGA and of the tethered

Forth model.



Host system
(typically a PC)

User interface

Forth system with

compiling words

and full dictionary

Target system
(typically micro-

controller)

Forth system with

reduced dictionary

Communication

link

Figure 1. The structure of the system based on the tethered Forth model

3. TETHERED FORTH MODEL

The Tethered Forth18 approach is dedicated for small target systems, where memory consumption for compilation mode

words and for full dictionary is unacceptable. We can reduce the memory footprint in the target system, by splitting our

Forth system into two parts (see Fig.1):

• The host part runs on a bigger system (typically a PC computer). It stores the full version of the dictionary, and

performs all compilation activities.

• The target part is located in the target microcontroller. It stores the reduced version of the dictionary, containing

only the compiled code. The target part is able to execute defined words locally. It is also able to communicate with

the host part, performing on request at least such actions, as “read data from memory”, “write data to memory”,

“start execution from the particular address”.

• The communication module providing bidirectional link between the host and target parts. In most implementations

it is a serial interface, at is available even in small microcontrollers and it can be handled with very small software

overhead.

3.1 Tethered Forth approach with the FPGA based system

One of assumptions in section 1 was, that we want to avoid use of additional compiler. Doesn’t the tethered approach

violate this assumption? The main reason to avoid using a compiled language, was the fact that when we reload the target

system with a new version of the program, we lose the state of the system stored in program internal variables. This

problem doesn’t occur in the tethered Forth model, as the variables are stored in the memory of the FPGA based target

system. Another complaint may be that when using the tethered approach, we don’t have a Forth system which itself

is capable to work interactively. For interactive operation the host part of the system is necessary. However our FPGA

based system anyway requires to be connected to the terminal to work interactively, and today a typical terminal is either

a PC computer, or at least a smartphone. Considering the above, we can state, that the requirement to have a host part

of our Forth system installed in our terminal is not a significant disadvantage. It is only necessary to have the host part

implemented in a portable way, so that it can be used on many “smart terminal” platforms. Therefore in our implementation

we have focused on providing the portable implementation of the host part.

4. IMPLEMENTATION OF THE PROPOSED SYSTEM

Implementation of the system consists of three parts: the host part, the target part and the communication link, as

described in section 3.



Table 1. The instruction set of the CPU.

Command mnemonic code Description of the command

One word instructions

PUSHD 0x01 Push the register GX_REG to the data stack

PUSHR 0x02 Push the register ADX_REG to the return stack

POPD 0x03 Pop the value from the top of the data stack and put it into the register FX_REG

POPR 0x04 Pop the value from the top of the data stack and put it into the register

ADX_REG

RET 0x06 Return from the subroutine

ADD 0x09 One operand of ADD instruction is in GX_REG, another is in FX_REG, results

goes to GX_REG

SUB 0x0A One operand of SUB instruction is in GX_REG, another is in FX_REG, results

goes to GX_REG

MUL 0x0B One operand of MUL instruction is in GX_REG, another is in FX_REG, results

goes to GX_REG

EQ 0x0C Check if the value in GX_REG is equal to 0

STORE 0x0D Store the value from GX_REG to the memory address from ADX_REG

LOAD 0x0E Load the value from the memory address stored in ADX_REG to GX_REG

OVER 0x0F Swap the two topmost values on the stack

EMIT 0x11 Send the character with ASCII code stored in GX_REG the host system for

displaying

EXEC_PC 0x12 Execute the word identified by PC address (this address is assign by PC after

operator creation) on the host system

GT 0x13 Compare two values. First value is in GX_REG, another value is in FX_REG.

Results goes to GX_REG

LEDIO 0x14 Set the external pin (currently only LEDs are connected for testing purposes)

according to GX_REG register

Two word instructions

CALL 0x05 Call the subroutine at address in ADX_REG

LOADI 0x07 Load the immediate value to GX_REG

JMP0 0x10 Jump if GX_REG value is zero then jump is performed else next instruction

executes

Three words instructions

MOV 0x08 Move the value from register which is specified by two least significant bits to

register specified by another two bits



4.1 Implementation of the target part

The target part is implemented in the VHDL language. It consists of two main state machines - the CPU and the monitor.

The CPU is a small 16-bit processor. It offers instruction set suited for execution of Forth language (see Table 1). To

support the tethered model, the CPU has special instruction (EXEC_PC) to execute operator in the host part of the system.

The CPU is implemented according to the MISC (Minimal Instruction Set Architecture) paradigm – only the necessary

instructions are supported, and more complex actions are implemented as Forth words. CPU executes instructions compiled

and stored in the internal FPGA RAM memory. The RAM memory is divided into two stacks and the dictionary. The return

stack grows towards lower addresses, and the data stack grows towards higher addresses. To simplify stack operations, the

CPU uses two stack pointers for the data stack. The return stack is handled with a single stack pointer.

CPU has following registers:

• GX_REG - it is a destination of most arithmetical operations, and a source argument for the STORE operation

• FX_REG - it is the second argument for arithmetical operations

• ADX_REG - it is a source address register

• PC_REG - keeps currently executed instruction

• SP_REG - keeps address of the top of data stack

• RP_REG - keeps address of the top return stack

Only GX_REG, FX_REG, ADX_REG are visible for programmer, which means that only these registers can be used as

source and destination for operations. CPU does not handle instruction pipeline. Each instruction is executed one after

another.

The instruction cycle consists of following operations:

• FETCH - during this phase of the cycle the instruction is fetched from memory.

• DECODE - during this phase the instruction is recognized by opcode and arguments are prepared for execution

• EXECUTE - in this phase the instruction is performed. In case of more complicated instruction this phase may

require a few clock cycles (for example two word instructions require two accesses to memory)

The Monitor is a simple state machine which controls operation of the CPU, according to commands received from the

communication link. It may start execution of the compiled words, it may also take over control of the memory bus and

read or write data words from or to this memory.

4.2 Implementation of the host part

The main goal when implementing the host part was to ensure the portability, so that not only the PC computer, but also a

smartphone may be used as an “intelligent terminal” allowing to use the system in interactive mode.

Looking for the proper language to implement the host part, we were considering Java and Python. Both are available

for different operating systems for PC computers, and both can be used on most smartphone platforms. Java is the native

solution for such mobile platforms as Java ME and Android†. Python can be run on Android smartphones, using the

additional Scripting Layer for Android19 (SL4A) extension.

Both languages offer automatic memory management and support data structures needed to effectively manage the

Forth dictionary

As the Python based solution is easier to modify (the program is distributed in the source form, and no recompilation

is needed), we have finally decided to implement the host part in Python.

†In fact Android uses a special virtual machine - Dalvik, which is not fully Java compatible, but on the source level we can write

applications for Android in Java



Table 2. Implementation of three basic Forth words: ROT, DUP and SWAP in the CPU assembler.

: ROT ASSEMBLER

POPD

MOV ADX_REG , FX_REG

POPD

MOV GX_REG , FX_REG

POPD

PUSHD

MOV GX_REG , ADX_REG

PUSHD

MOV GX_REG , FX_REG

PUSHD

;

: DUP ASSEMBLER

POPD

MOV GX_REG , FX_REG

PUSHD

PUSHD

;

: SWAP ASSEMBLER

POPD

MOV GX_REG , FX_REG

POPD

PUSHD

MOV GX_REG , FX_REG

PUSHD

;

The host part implements a simple x86-like assembler supporting basic CPU instructions listed in the Table 1. Ad-

ditionally it implements also the Forth interpreter, able to execute the compilation words in the host system, and execute

other words in the target system.

The interpreter can use two types of input: file input or console input. The first block of the interpreter is a scanner,

which reads words from input, deletes comments and returns lexems ready for use by the parser. The parser block is not

complicated because each word in Forth simply executes certain operation.

For example execution of the colon operator changes state of interpreter to the compile mode and assumes that the next

word is the name of operator to be created. The scanner and parser are running in the host part of system. The main loop

of the interpreter performs following actions:

• Get lexem from the scanner.

• Check the state of the interpreter and control bits of operators: If interpreter is in interactive mode, find the byte code

corresponding to the lexem in the dictionary. If interpreter works in compile mode, check if the lexem corresponds

to the operator existing in the dictionary and if this operator is immediate. If operator is immediate then execute it,

else translate it to the call operation.

• Send produced byte code to the target system.

The third part of the system is the implementation of the basic Forth words in the assembler. Example implementations

of three basic words is shown in the Table 2.

4.3 Implementation of the communication link

The communication link is implemented both on the host side and on the target side.

The host side implementation consists of the hardware part (which in case of the PC computer is an USB-UART

adapter, and in case of the smartphone a Bluetooth-UART adapter), and the software part. The software for PC part is

based on the Python serial module, but it should be relatively easy to port it to Bluetooth libraries for the smartphone

version.

The target side implementation is based on the smalluart.vhd UART implementation published as a part of the fpgadbg

project.20

The main tasks of the communication link module are:

• In the transmitter part – to encapsulate commands exchanged between the host and the target parts of the system

into records which may be transmitted via the UART interface.

• In the receiver part to decode received records producing the commands, and to pass them to the monitor module for

execution.



4.4 Suspending and resuming of the interactive session

If our system is supposed to be used for control and debugging of the FPGA based electronic systems, it is possible, that

there may be a need to stop the interactive session, and disconnect the intelligent terminal (host) for some time. Afterwards

it should be possible to reconnect the terminal and resume the session. In fact, it is desirable, that the operator should be

able to start execution of the longer procedure, disconnect the terminal, and after some time reconnect it and check the

results in the resumed session.

In case of standard Forth systems, where terminal does not store any information about the state of the system, such

operation may be performed without any special precautions. In the tethered Forth system however, it is necessary to verify

that the state of the target system still corresponds to the state of the host part of the system.

To implement the described functionality, the host part of the system stores the content of the reduced target dictionary,

and during reconnection checks if the target dictionary has changed. If not, the session may be resumed. Otherwise it

must be assumed, that the target dictionary is modified in an unknown way, and the terminal asks the user if he wants to

start a new session with initial content of the dictionary. The user must clearly confirm the decision to start a new session,

to avoid the situation when he connects to the system previously used by someone else and reinitializes it, destroying the

work of the previous user.

In the future versions of the system it should be possible to store the state of the system, consisting of both: reduced

target dictionary and full host dictionary, in the central database on the server. This should allow to use alternately different

terminals to interact with the system. After each session the terminal should update the dictionaries stored in the database,

and during connecting, the terminal should download current state of both dictionaries. Of course even in this situation it is

necessary to verify, that the target dictionary is identical with the stored one, and otherwise propose to start a new session.

5. RESULTS

The implemented system has been tested in the simulated environment and in the real hardware

In the simulated environment the target part was implemented as a behavioral model of the FPGA simulated in the

GHDL21 simulator. The host part was running on standard PC. Both parts were connected using the simulated UART

module22 developed for dedicated hardware-software cosimulation environment,23 and implemented partially in VHDL

and partially in C, using the VPI interface.

The tests in real hardware were performed using the Xilinx Spartan-3A Starter Kit24 board. The compiled FPGA part

of the Forth system occupied 23% of the logic slices (1368 slices from 5888 available) and 40% of internal memory (8

RAMB16BWE blocks from 20 available) in the xc3s700an chip. The CPU was successfully compiled for 50 MHz clock

frequency.

Performed test have shown, that the system operates correctly both with simulated hardware and with the real hardware.

It was possible to work interactively, to define new words and to execute previously defined words.

6. CONCLUSIONS

Presented solution allows to implement the “soft Core” Forth CPU in the FPGA based system. To minimize consumption

of logic resources and of internal memory, the solution is based on the Tethered Forth model, in which the full Forth

dictionary is stored in the intelligent terminal, and the compilation words are executed by the intelligent terminal. Only the

compiled words are stored in and executed in the target system.

Proposed system may be an useful tool for testing and debugging of FPGA based electronic systems, allowing to

develop and run control and debug programs in interactive way typical for Forth system.

Design of the CPU allows to easily add extensions dedicated for communication with the particular hardware. Further

work should be focused on optimization of the CPU design and its integration with typical FPGA internal buses like

Wishbone.25



REFERENCES

[1] “About excalibur embedded processor solutions.” http://www.altera.com/products/devices/excalibur/

exc-index.html (June 2013). [Online; accessed 29-June-2013].

[2] “Virtex-5 family overview.” http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf

(February 2009). [Online; accessed 29-June-2013].

[3] “Zynq-7000 all programmable soc overview.” http://www.xilinx.com/support/documentation/data_

sheets/ds190-Zynq-7000-Overview.pdf (March 2013). [Online; accessed 29-June-2013].

[4] “Cyclone v device overview.” http://www.altera.com/literature/hb/cyclone-v/cv_51001.pdf (May 2013).

[Online; accessed 29-June-2013].

[5] “Arria v device overview.” http://www.altera.com/literature/hb/arria-v/av_51001.pdf (May 2013). [On-

line; accessed 29-June-2013].

[6] “Amba specifications.” http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.amba/

index.html (2010). [Online; accessed 29-June-2013].

[7] “Wishbone high performance z80.” http://opencores.org/project,wb_z80 (June 2012). [Online; accessed 29-

June-2013].

[8] “Or1200 openrisc processor.” http://opencores.org/or1k/OR1200_OpenRISC_Processor (December 2012).

[Online; accessed 29-June-2013].

[9] “Opensparc t1.” http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.

html (June 2013). [Online; accessed 29-June-2013].

[10] Brodie, L., “Thinking forth.” http://kent.dl.sourceforge.net/project/thinking-forth/reprint/rel-1.

0/thinking-forth.pdf (2004). [Online; accessed 29-June-2013].

[11] “Gforth home page.” http://www.gnu.org/software/gforth/ (March 2013). [Online; accessed 29-June-2013].

[12] “AmForth.” http://amforth.sourceforge.net/ (June 2013). [Online; accessed 29-June-2013].

[13] “AVR 8-bit and 32-bit Microcontroller.” http://www.atmel.com/products/microcontrollers/avr/default.

aspx (June 2013). [Online; accessed 29-June-2013].

[14] “Atmel website.” http://www.atmel.com/ (June 2013). [Online; accessed 29-June-2013].

[15] Bowman, J., “The J1 Forth CPU.” http://excamera.com/sphinx/fpga-j1.html (October 2012). [Online; ac-

cessed 29-June-2013].

[16] Bowman, J., “J1: a small Forth CPU core for FPGAs,” 43–46.

[17] “Riscy Pygness – Pygmy Forth for the ARM.” http://www.utoh.org/riscy/ (October 2011). [Online; accessed

29-June-2013].

[18] Martinez, H., “Developing a tethered forth model,” ACM SIGFORTH Newsletter 2(3), 17–19 (1991).

http://www.odysci.com/article/1010113016014389.

[19] “android-scripting – scripting layer for android brings scripting languages to android.” http://code.google.com/

p/android-scripting/ (June 2013). [Online; accessed 29-June-2013].

[20] Zabolotny, W. M., “Fpgadbg - a tool for FPGA debugging.” http://www.ise.pw.edu.pl/~wzab/fpgadbg/

(September 2009). [Online; accessed 29-June-2013].

[21] Gingold, T., “Ghdl - where vhdl meets gcc.” http://ghdl.free.fr/ (2010). [Online; accessed 29-June-2013].

[22] Zabolotny, W. M., “Pseudo UART allowing to connect via pseudoterminal to GHDL simulated IP core.” http://

ftp.funet.fi/pub/archive/alt.sources/2618.gz (2011).

[23] Zabołotny, W. M., “Development of embedded pc and fpga based systems with virtual hardware,” Proceedings

SPIE 8454, 84540S–84540S–7 (2012).

[24] “Spartan-3A Starter Kit.” http://www.xilinx.com/products/boards-and-kits/HW-SPAR3A-SK-UNI-G.htm

(June 2013). [Online; accessed 29-June-2013].

[25] “Soc interconnection: Wishbone.” http://opencores.org/opencores,wishbone (2013). [Online; accessed 29-

June-2013].

http://www.altera.com/products/devices/excalibur/exc-index.html
http://www.altera.com/products/devices/excalibur/exc-index.html
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.altera.com/literature/hb/cyclone-v/cv_51001.pdf
http://www.altera.com/literature/hb/arria-v/av_51001.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.amba/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.amba/index.html
http://opencores.org/project,wb_z80
http://opencores.org/or1k/OR1200_OpenRISC_Processor
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html
http://kent.dl.sourceforge.net/project/thinking-forth/reprint/rel-1.0/thinking-forth.pdf
http://kent.dl.sourceforge.net/project/thinking-forth/reprint/rel-1.0/thinking-forth.pdf
http://www.gnu.org/software/gforth/
http://amforth.sourceforge.net/
http://www.atmel.com/products/microcontrollers/avr/default.aspx
http://www.atmel.com/products/microcontrollers/avr/default.aspx
http://www.atmel.com/
http://excamera.com/sphinx/fpga-j1.html
http://www.utoh.org/riscy/
http://code.google.com/p/android-scripting/
http://code.google.com/p/android-scripting/
http://www.ise.pw.edu.pl/~wzab/fpgadbg/
http://ghdl.free.fr/
http://ftp.funet.fi/pub/archive/alt.sources/2618.gz
http://ftp.funet.fi/pub/archive/alt.sources/2618.gz
http://www.xilinx.com/products/boards-and-kits/HW-SPAR3A-SK-UNI-G.htm
http://opencores.org/opencores,wishbone

