
Copyright 2006 Society of Photo-Optical Instrumentation Engineers.
This paper was published in Proceedings of SPIE (Proc. SPIE Vol.

6347, 63470G) and is made available as an electronic reprint (preprint)
with permission of SPIE. One print or electronic copy may be made for
personal use only. Systematic or multiple reproduction, distribution to
multiple locations via electronic or other means, duplication of any ma-
terial in this paper for a fee or for commercial purposes, or modification
of the content of the paper are prohibited.

1

http://bookstore.spie.org/index.cfm?fuseaction=detailvolume&productid=714028&coden=PSISDG
http://bookstore.spie.org/index.cfm?fuseaction=detailvolume&productid=714028&coden=PSISDG


Clock-efficient and maintainable implementation of complex
state machines in VHDL

Wojciech M. Zabolotnya

aInstitute of Electronic Systems, Nowowiejska 15/19, 00-665 Warszawa, Poland;

ABSTRACT
This paper presents a nonstandard approach to describe the complex state machines in VHDL to obtain both good read-
ability of the code and efficient operation. This new approach, called “variable driven flow control in sequential process”
allows to avoid loss of clock cycles when complex decisions are to be taken, and simultaneously allows to keep the structure
of the code clear and easy to maintain.

A simple example has been presented, showing the idea and practical implementation of the proposed method. The
code produced by the presented method is synthesizable, and the obtained parameters of resulting FPGA implementation
(both speed and occupancy) are good.

Keywords: Logical synthesis, VHDL, FPGA, behavioral description

1. INTRODUCTION
When one implements a state machine in a hardware description language for FPGA implementation, it is often necessary
to chose between the clearness of the code, the efficiency of the resulting implementation and the speed of operation.

The typical implementations of state machines - the one-process behavioral description and the two-process behavioral
description1 provide very good results in most typical situations, but in some more complicated cases they are not able to
describe the desired functionality of the state machine in both readable and easily synthesizable way.

The next section presents a relatively simple system, which requires such a special handling. This example will be used
to introduce a new method of state machine implementation.

2. PRACTICAL EXAMPLE - DATA SERIALIZER
Let us consider a simple data serializing system shown in the Fig. 1. The device receives N data bytes (D0, D1 ... DN−1)
from its parallel inputs, and sends them as a data record through the serial link. However the data record should be preceded
with a configurable header which may contain three header bytes (HA, HB and HC). Each header byte may be enabled or
disabled independently. Some possible forms of the data record with the header are shown below:

HA HB HC D0 D1 ... DN – all headers sent
HA HB D0 D1 ... DN – HB omitted

HB D0 D1 ... DN – HA and HC omitted
D0 D1 ... DN – all headers omitted

The most straight-forward implementation of the above system is shown in the Fig. 2. This implementation uses the
standard one-process implementation of state machine. The code is easy to understand and to modify, but it is not efficient.
Omitting of any header word costs a lost clock cycle. Some simulation waveforms exposing the above effect are shown
in the Fig. 3. (In all simulations the following values are assumed: N = 10, HA = 0x8A, HB = 0x8B, HC = 0x8C,
D0 = 0x10, D1 = 0x11, ... D10 = 0x1A).

One could be tempted to avoid the problem by running the state machine at the higher clock frequency and using the
FIFO to transfer the data to the link, but such approach leads to unnecessary increase of system’s complexity and probably
to increase of power consumption.

Further author information: (Send correspondence to W.M.Zabolotny)
W.M.Zabolotny: E-mail: wzab@ise.pw.edu.pl, Telephone: +48 22 6607717



data N−1

[...]

data 1

data 0

header A

header C

header B

link

header A enable

header A enable

 header B enable

Figure 1. The block diagram of the simple data serializer used to illustrate the problem with implementation of state machines.

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.testpkg.all;

entity test1 is
port (
hdr_a_en : in std_logic;
hdr_b_en : in std_logic;
hdr_c_en : in std_logic;
data : in T_INPUT;
data_out : out std_logic_vector(7 downto 0);
data_valid : out std_logic;
run : in std_logic;
clk : in std_logic;
rst : in std_logic);

end test1;

architecture beh1 of test1 is

type T_STATE is (ST_IDLE, ST_HDR_A, ST_HDR_B,
ST_HDR_C, ST_SEND);

signal state : T_STATE := ST_IDLE;
signal counter : integer range 0 to NINPUTS-1 := 0;

begin -- beh1
st1 : process (clk, rst)
begin -- process st1
if rst = ’0’ then
state <= ST_IDLE;
data_valid <= ’0’;
data_out <= x"00";

elsif clk’event and clk = ’1’ then
-- rising clock edge
-- defaults
data_valid <= ’0’;
data_out <= x"00";
-- state definitions

case state is
when ST_IDLE =>
if run = ’1’ then
state <= ST_HDR_A;

end if;
when ST_HDR_A =>
if hdr_a_en = ’1’ then
data_out <= HEADER_A;
data_valid <= ’1’;

end if;
state <= ST_HDR_B;

when ST_HDR_B =>
if hdr_b_en = ’1’ then
data_out <= HEADER_B;
data_valid <= ’1’;

end if;
state <= ST_HDR_C;

when ST_HDR_C =>
if hdr_c_en = ’1’ then
data_out <= HEADER_C;
data_valid <= ’1’;

end if;
counter <= 0;
state <= ST_SEND;

when ST_SEND =>
data_out <= data(counter);
data_valid <= ’1’;
if counter = NINPUTS-1 then
state <= ST_IDLE;

else
counter <= counter + 1;

end if;
when others =>
state <= ST_IDLE;

end case;
end if;

end process st1;
end beh1;

Figure 2. Standard one-process implementation of the serializer’s state machine



Figure 3. Functional simulation waveforms in the simplest
implementation of the state machine.

Figure 4. The functional simulation waveforms in the stan-
dard two-process implementation of state machine.

Figure 5. Functional simulation waveforms in the improved
one-process implementation of the state machine.

Figure 6. The functional simulation waveforms in the im-
plementation with the “variable driven flow control in se-
quential process”.



library ieee;
use ieee.std_logic_1164.all;
library work;
use work.testpkg.all;

entity test1 is
port (
hdr_a_en : in std_logic;
hdr_b_en : in std_logic;
hdr_c_en : in std_logic;
data : in T_INPUT;
data_out : out std_logic_vector(7 downto 0);
data_valid : out std_logic;
run : in std_logic;
clk : in std_logic;
rst : in std_logic);

end test1;

architecture beh1 of test1 is

type T_STATE is (ST_IDLE, ST_HDR_A, ST_HDR_B,
ST_HDR_C, ST_SEND);

signal state, state_next : T_STATE := ST_IDLE;
signal counter,
counter_next : integer range 0 to NINPUTS-1 := 0;

signal run_s : std_logic;

begin -- beh1

-- sequential process
st1s : process (clk, rst)
begin -- process st1s
if rst = ’0’ then
-- asynchronous reset (active low)
state <= ST_IDLE;
counter <= 0;
run_s <= ’0’;

elsif clk’event and clk = ’1’ then
-- rising clock edge
state <= state_next;
counter <= counter_next;
run_s <= run;

end if;
end process st1s;

-- combinatorial process
st1c : process (counter, data, hdr_a_en, hdr_b_en,

hdr_c_en, rst, run_s, state)
begin -- process st1c
-- defaults
data_valid <= ’0’;
data_out <= x"00";
state_next <= state;
counter_next <= counter;
if rst = ’1’ then
-- normal operation
case state is
when ST_IDLE =>
counter_next <= 0;
if run_s = ’1’ then
state_next <= ST_HDR_A;

end if;
when ST_HDR_A =>
if hdr_a_en = ’1’ then
data_out <= HEADER_A;
data_valid <= ’1’;

end if;
state_next <= ST_HDR_B;

when ST_HDR_B =>
if hdr_b_en = ’1’ then
data_out <= HEADER_B;
data_valid <= ’1’;

end if;
state_next <= ST_HDR_C;

when ST_HDR_C =>
if hdr_c_en = ’1’ then
data_out <= HEADER_C;
data_valid <= ’1’;

end if;
state_next <= ST_SEND;

when ST_SEND =>
data_out <= data(counter);
data_valid <= ’1’;
if counter = NINPUTS-1 then
state_next <= ST_IDLE;

else
counter_next <= counter + 1;

end if;
when others => null;

end case;
end if;

end process st1c;

end beh1;

Figure 7. Standard two-process implementation of the serializer’s state machine

The problem is associated not with the limitations of the state machines, but with the possibilities of their description
in VHDL. The cause of the problem is that checking of each header enable bit and sending or omitting of the particular
header word is associated with a different state. So even if the particular header word is disabled, it is necessary to use the
single clock pulse to go the state associated with the next header word.

This problem may not be solved by using the standard two process implementation (Fig. 7), as this solution suffers
from the same drawback (see Fig. 4).

3. ATTEMPT TO SOLVE THE PROBLEM WITH THE STANDARD METHODS
It seems, that the problem could be easily solved by checking of all header enable bits, and sending of first enabled header
word in a single state. Unfortunately in this case we also need to introduce additional states for next header words, and we
need to consider all possible combinations of remaining header enable bits in these states as well. The final full solution
based on this idea is shown in the Fig. 8. As we can see this implementation contains a lot of “copied and pasted” code.
If any corrections are to be made, they need to be performed in more than one place at the same moment, so such code is
difficult to understand and to maintain.

However, as can be seen in the Fig. 5, this implementation offers good performance and no clock pulses are lost for
any combination of header enable signals.



library ieee;
use ieee.std_logic_1164.all;
library work;
use work.testpkg.all;

entity test1 is
port (
hdr_a_en : in std_logic;
hdr_b_en : in std_logic;
hdr_c_en : in std_logic;
data : in T_INPUT;
data_out : out std_logic_vector(7 downto 0);
data_valid : out std_logic;
run : in std_logic;
clk : in std_logic;
rst : in std_logic);

end test1;

architecture beh1 of test1 is

type T_STATE is (ST_IDLE, ST_HDR_A, ST_HDR_B,
ST_HDR_C, ST_SEND);

signal state : T_STATE := ST_IDLE;
signal counter : integer range 0 to NINPUTS-1 := 0;

begin -- beh1
st1 : process (clk, rst)
begin -- process st1
if rst = ’0’ then
-- asynchronous reset (active low)
state <= ST_IDLE;
data_valid <= ’0’;
data_out <= x"00";
counter <= 0;

elsif clk’event and clk = ’1’ then
-- rising clock edge
-- defaults
data_valid <= ’0’;
data_out <= x"00";
case state is
when ST_IDLE =>
counter <= 0;
if run = ’1’ then
if hdr_a_en = ’1’ then
data_out <= HEADER_A;
data_valid <= ’1’;
state <= ST_HDR_B;

elsif hdr_b_en = ’1’ then
data_out <= HEADER_B;
data_valid <= ’1’;
state <= ST_HDR_C;

elsif hdr_c_en = ’1’ then
data_out <= HEADER_C;

counter <= 0;
data_valid <= ’1’;
state <= ST_SEND;

else
data_out <= data(0);
data_valid <= ’1’;
counter <= 1;
state <= ST_SEND;

end if;
end if;

when ST_HDR_B =>
if hdr_b_en = ’1’ then
data_out <= HEADER_B;
data_valid <= ’1’;
state <= ST_HDR_C;

elsif hdr_c_en = ’1’ then
data_out <= HEADER_C;
data_valid <= ’1’;
counter <= 0;
state <= ST_SEND;

else
data_out <= data(0);
data_valid <= ’1’;
counter <= 1;
state <= ST_SEND;

end if;
when ST_HDR_C =>
if hdr_c_en = ’1’ then
data_out <= HEADER_C;
data_valid <= ’1’;
counter <= 0;
state <= ST_SEND;

else
data_out <= data(0);
data_valid <= ’1’;
counter <= 1;
state <= ST_SEND;

end if;
when ST_SEND =>
data_out <= data(counter);
data_valid <= ’1’;
if counter = NINPUTS-1 then
state <= ST_IDLE;

else
counter <= counter + 1;

end if;
when others =>
state <= ST_IDLE;

end case;
end if;

end process st1;
end beh1;

Figure 8. Improved, but complex and hard to maintain one-process implementation



As we can see, it is difficult to efficiently implement the presented serializer using the standard methods of description
of state machines. The desired solution should combine the clearness of the code offered by the standard implementations
(Fig. 2 and Fig. 7) with the clock efficiency of the improved one-process implementation (Fig. 5).

It is necessary to mention, that the described problem may also be solved in a completely different way, e.g. by
introducing of additional hardware which will detect if any header word is still to be sent, and returning the identifier of
the first pending header word. In this case the state machine could use only three states: ST IDLE, ST SEND HEADERS,
ST SEND DATA. However this method leads to significant increase of complexity of the state machine and will be not
discussed here.

4. PROPOSED SOLUTION
In the previously described solutions a separate state was allocated for checking of each possible header word. So the clock
pulse is needed to move to the next state. The problem could be solved easily, if the machine could analyze the conditions
for a few states in the same clock cycle. If the conditions for the particular state are met, the machine takes the defined
actions and waits for the next clock pulse. If the conditions are not met, the machine continues checking of conditions for
the next state (this will be called the “fall through” functionality).

The above functionality may not be implemented using the standard, signal based methods of description of state
machines. The signal assignment is performed only at the end of the process, so there is no way to implement the “fall
through” functionality. However this goal may be achieved by using of variables. The use of variables in synthesizable
code is generally discouraged, but some developers report successfully using of them.2

The solution proposed in this paper is called “variable driven data flow in the sequential process”. In this approach the
variable is used to store the calculated next state of the machine, and only at the very end of the process the variable’s value
is assigned to the signal determining the next state of the machine. Because variable assignment is performed immediately,
it is possible to use the new value in the rest of the process. However some additional changes are also needed. The
big “case” instruction used in a standard implementation of state machine must be replaced with the sequence of “if”
instructions, allowing us to implement the requested “fall through” feature. The last change is needed to provide a method
for disabling of “fall through” feature if any activity requiring waiting for a next clock pulse is triggered. A dedicated
“v nowait” variable is used to control the “fall through” feature - it works only as long, as this variable is equal to “true”.
After the conditions associated with the particular state are met, and any operation requiring waiting till the next clock
pulse is triggered, this variable should be set to false. Failing to do so may lead to incorrect and difficult to debug code.

The general structure of the code using the “variable driven flow control in sequential process” is very similar to the
standard two-process implementation (please compare Fig. 7 and Fig. 9) and does not require duplicating of code. The
serializer implemented with this method does not lose clock cycles for any combination of header enable bits (Fig. 6).

5. IS THE PROPOSED CODE SYNTHESIZABLE?
When using any more advanced techniques in writing of VHDL code, it is easy to produce a non-synthesizable code. It
is possible, that the code which is a correct VHDL and which simulates perfectly, may not be converted into working
hardware. Some of these limitations depend on the synthesis tools used, but some of them (e.g. when using constructs like
“wait for 10 ns”, or using two different clocks in the same sequential process) may not be synthesized by any tool. So the
important question is if the presented code is synthesizable. To answer this question, the presented examples have been
synthesized using the Altera’s Quartus R© II Web Edition ver. 6.0 SP1 tool. For the version based on “complex one-process
implementation” (Fig. 8) the synthesized design has occupied 105 logic elements, and the maximum clock frequency was
equal to 276.70 MHz. For the version based on “variable driven flow control in sequential process” (Fig. 9) the synthesized
design has occupied 99 logic elements, and the maximum clock frequency was equal 316.36 MHz. The results of the
post-synthesis simulation of the proposed design are shown in the Fig. 10. The obtained results prove, that the proposed
method allows to produce synthesizable code with good properties.

However a care should be taken and post-synthesis simulation should be performed, especially if someone uses any
older synthesis tools. A few years ago, when I first tried to use the described method, it was common, that some synthesis
tools have generated incorrect implementation.



library ieee;
use ieee.std_logic_1164.all;
library work;
use work.testpkg.all;

entity test1 is
port (
hdr_a_en : in std_logic;
hdr_b_en : in std_logic;
hdr_c_en : in std_logic;
data : in T_INPUT;
data_out : out std_logic_vector(7 downto 0);
data_valid : out std_logic;
run : in std_logic;
clk : in std_logic;
rst : in std_logic);

end test1;

architecture beh1 of test1 is

type T_STATE is (ST_IDLE, ST_HDR_A, ST_HDR_B,
ST_HDR_C, ST_SEND);

signal state, state_next : T_STATE := ST_IDLE;
signal counter,
counter_next : integer range 0 to NINPUTS-1 := 0;

signal run_s : std_logic;

begin -- beh1

-- sequential process
st1s : process (clk, rst)
begin -- process st1s
if rst = ’0’ then
-- asynchronous reset (active low)
state <= ST_IDLE;
counter <= 0;
run_s <= ’0’;

elsif clk’event and clk = ’1’ then
-- rising clock edge
state <= state_next;
counter <= counter_next;
run_s <= run;

end if;
end process st1s;

-- combinatorial process
st1c : process (counter, data, hdr_a_en, hdr_b_en,

hdr_c_en, rst, run_s, state)
variable v_next : T_STATE;
variable v_nwait : boolean := true;

begin -- process st1c
-- defaults

data_valid <= ’0’;
data_out <= x"00";
v_next := state;
v_nwait := true;
counter_next <= counter;
if rst = ’1’ then
-- normal operation
if v_nwait and v_next = ST_IDLE then
counter_next <= 0;
if run_s = ’1’ then
v_next := ST_HDR_A;

end if;
end if;
if v_nwait and v_next = ST_HDR_A then
if hdr_a_en = ’1’ then
data_out <= HEADER_A;
data_valid <= ’1’;
v_nwait := false;

end if;
v_next := ST_HDR_B;

end if;
if v_nwait and v_next = ST_HDR_B then
if hdr_b_en = ’1’ then
data_out <= HEADER_B;
data_valid <= ’1’;
v_nwait := false;

end if;
v_next := ST_HDR_C;

end if;
if v_nwait and v_next = ST_HDR_C then
if hdr_c_en = ’1’ then
data_out <= HEADER_C;
data_valid <= ’1’;
v_nwait := false;

end if;
v_next := ST_SEND;

end if;
if v_nwait and v_next = ST_SEND then
data_out <= data(counter);
data_valid <= ’1’;
if counter = NINPUTS-1 then
v_next := ST_IDLE;

else
counter_next <= counter + 1;

end if;
end if;

end if;
state_next <= v_next;

end process st1c;

end beh1;

Figure 9. Two process implementation using the “variable driven flow control in sequential process” technique



Figure 10. The functional simulation waveforms in the implementation with the “variable driven flow control in sequential process”.

6. CONCLUSIONS
A new method for description of some state machines in the VHDL code has been proposed. The presented method offers
serious advantages when a standard approach does not allow to obtain both good code readability and good performance
of resulting implementation. The described method “variable driven flow control in sequential process” uses variables to
efficiently describe complex state transitions without the need to duplicate code or to lose clock cycles when checking for
multiple conditions in a sequence of states.

The presented method however requires a high coding discipline, as the introduced “fall through” functionality is
potentially dangerous, and may lead to incorrect and difficult to debug code, when used improperly.

ACKNOWLEDGMENTS
The functional simulations presented in the paper have been performed using GHDL3 - the free VHDL simulator. The dia-
grams have been prepared using the gtkwave4 program. The synthesis and post-synthesis simulations have been performed
using the Quartus R© II Web Edition ver. 6.0 SP1 freely available from Altera.

REFERENCES
1. K. Skahill, VHDL for Programmable Logic, Prentice Hall, 1996.
2. J. Gaisler, “A structured VHDL design method.” <http://www.gaisler.com/doc/vhdl2proc.pdf>.
3. “GHDL, free VHDL simulator.” <http://ghdl.free.fr>.
4. “gtkwave - visualization tool for vcd, lxt, and vzt files.” <http://home.nc.rr.com/gtkwave/>.


