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ABSTRACT

This paper presents the system integrating the dedicated measurement and control electronic systems for Gas Electron

Multiplier1 (GEM) detectors with the Control and Data Acquisition system (CODAS) in the JET facility in Culham,

England. The presented system performs the high level procedures necessary to calibrate the GEM detector and to protect

it against possible malfunctions or dangerous changes in operating conditions. The system also allows control of the GEM

detectors from CODAS, setting of their parameters, checking their state, starting the plasma measurement and to reading

the results. The system has been implemented using the Python language, using the advanced libraries for implementation

of network communication protocols, for object based hardware management and for data processing.
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DAS

1. INTRODUCTION

The KX1 soft X-ray diagnostic on the JET tokamak in Culham2 is focused chiefly on measurement of plasma impurities.

The upgrade of this diagnostic is based on GEM detectors,3, 4 connected to dedicated readout electronics.5, 6 Control and

data processing functions are implemented in a FPGA firmware,7, 8 and in an embedded PC. The structure of the system

is shown in Figure 1. An embedded device server9 provides software controlling the operation of the readout system and

surrounding systems like low voltage (LV) and high voltage (HV) power supply units for each GEM detector and analog

front-end.

The embedded device server allows detector to be used autonomously, e.g. when controlled by an expert from the

Matlab console. However to integrate the detector with the JET data acquisition system (CODAS - the COntrol and Data

Acquisition System),10–13 an additional layer - the so called device server is necessary.

The device server should provide an interface between CODAS and the embedded server, and should preserve informa-

tion about the state of the KX1 diagnostic if the embedded server must be restarted. Additionally the device server allows

separation of the private TCP/IP network, used to connect components of the KX1 diagnostic, from the internal CODAS

network.
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Figure 1. Embedded and device servers in the KX1 diagnostic.

2. REQUIREMENTS FOR THE DEVICE SERVER

The device server must perform multiple operations in parallel:

• Periodic control of the detector parameters (monitoring thread)

• Implementation of an event based HTTP protocol for JET devices.14

• Implementation of data acquisition from the GEM readout electronics

• Continuous control of the safe operation of the detector

The above tasks must be performed in parallel, however as some of them use the same hardware resources, reliable syn-

chronization mechanisms must be provided to avoid misconfiguration of hardware, which can result in corruption of data

or even in damage of hardware.

The device server handles two detectors ( “Ni” – nickel monitoring detector, and “W” – tungsten monitoring detector),

therefore it should be running on hardware which is independent of both those detectors. Additionally it must be able to

process huge data sets in the RAM memory, and to store significant amount of data on the local hard disk (e.g. the acquired

data from the GEM detectors). Therefore a separate rack mounted PC computer, running under control of the Debian Linux

OS was chosen as a hardware platform.

It is important, that data acquisition at JET is not performed continuously. The plasma pulses are separated by a

significant amount of time, which may be used for reading and archiving of data. This relaxes requirements related to

real-time data processing, and allows use of solutions based on programming languages which are slower than C or C++,

but easier in development and maintenance.

This was especially important, as the system was developed as a unique device. Different requirements and constraints

were discovered during the process of development and testing, and therefore a flexible language allowing for fast proto-

typing and testing was necessary.

The data acquisition and processing algorithms were developed in Matlab, but as Matlab is not supported in JET it was

not possible to use it in the data acquisition and processing chain (even though it could be used as a system configuration

and calibration tool). Therefore another language, comparable with Matlab was necessary, which could be used both in the

embedded PC and in the rack PC.



Figure 2. Classes used in the device server.

Python has been chosen as a language fulfilling the above requirements and offering following features:

• allows implementation of multithreaded programs, using the threading15 module. Multiple threads are tightly cou-

pled, as they can share variables, and it is easy to ensure appropriate synchronization between threads.

• offers reasonable performance, as the modules (libraries) are compiled to the bytecode at first use.

• offers multiple extension libraries. These allow implementation of e.g. a TCP/IP server in just a few lines of source

code. Python also offers multiple modules for scientific computing like optimization, linear algebra, integration,

interpolation, special functions, FFT, signal and image processing, etc.

• is an object oriented language, and offers easy handling of complex data structures

• offers fully automated memory management

• offers advanced, object based exception handling

• offers the possibility to implement time critical functions in C or C++

A more detailed description of how the above features have been used in implementation of the device server will be

presented in the following sections. The general structure of the device server implemented as a set of Python classes is

shown in Figure 2.

3. MAIN BLOCKS AND THREADS IN THE DEVICE SERVER

As described before, the device server performs multiple tasks in parallel. Some of those activities were separated into

dedicated threads, and some of them have been implemented in an event driven software framework. The Python language

allows efficient use of both of those approaches.



3.1 The monitoring thread

The parameters of the GEM detector vary in time, due to their sensitivity to such parameters as temperature, pressure and

humidity. Therefore the detector should be continuously calibrated. This calibration is performed by the monitoring thread,

which periodically measures the energy spectra of X-ray radiation emitted by a 55Fe iron source installed in the diagnostic.

The acquired calibration data are further processed by the software calculating the current gain of the detector (written in

Python, as described in Section 4.1, or in Matlab), which is included in the configuration data of the system, and used for

data analysis. The monitoring thread uses the same hardware as measurement of plasma pulse radiation. Therefore it had

to be implemented as a thread with lower priority, which is described in more detail in Section 5.1.

3.2 Detector Protection System

To decrease risk of detector damage due to operation in incorrect operating conditions, the system has been equipped with

a Detector Protection System (DPS), shown in Figure 3. The task of the DPS is to shut down the KX1 electronics in a

potentially dangerous condition:

• Temperature outside the defined safe operation range

• Humidity outside the defined safe operation range. Especially humidity which is too high causes risk of condensation

in the electronics system, which may lead to damage.

• A high voltage value outside the defined safe operation range (a value which is too high may cause the detector

breakdown, while a value which is too low may be a symptom of power supply overload)

• Lack of a gas flow in the detector gas system

The DPS runs as a separate thread, periodically reading sensors measuring the above operating conditions. For each

checked parameter it is possible to define a safe operating range, a warning range, and an alarm range. When the parameter

enters the warning range, only a warning message is issued to the operator and to logs. When the parameter enters the

alarm range, an error message is issued to the operator and to logs, and then the affected detector is shut down.

An essential hardware component of the Detector Protection System is the “Power Strip”.16 It is a device allowing

control of up to six mains power sockets via a TCP/IP network, e.g. using a WWW interface or via a SNMP protocol.

The shutdown is performed on two levels. First the embedded systems are requested to switch off all subsystems in a

controlled manner, and after that the “Power Strip” is requested to switch off the mains power for the particular detector

electronics box and its HV/LV power supply.

It is possible that some sensors may not produce valid information e.g. due to malfunction. In such a situation the

authorized operator should be able to decide, that the detector may be used without information about the particular

parameter. To ensure that, the detector protection system allows the definition of a list of masked sensors.

Implementation of the DPS must take into consideration, that just after switching on, the electronics boxes perform

lengthy initialization (booting of the system, loading of FPGA firmware etc.), and do not provide access to sensors. How-

ever if such situation (no access to sensors) occurs during normal operation, it may be a symptom of loss of control and

as a potentially dangerous event it should lead to shutdown. To allow proper initialization of the system after power-up,

and to correctly handle a situation, where connectivity is lost during the operation, the DPS implements a five minute long

“grace period” after the start of the device server.

A special situation occurs, when the system is malfunctioning, but must be switched on under special supervision

to investigate the cause of the problems. This may be achieved by temporarily masking of the sensors causing system

shutdown, or by total disabling of the DPS by not starting the device server. In the latter case the embedded servers may

still be accessed in the expert mode from Matlab.

The DPS relies on correct operation of the device server running on the rack PC. However it is also important to

protect the detector against the situation when either the rack PC is malfunctioning or the network connection between the

electronic boxes and the rack PC is broken. The described malfunction is handled by an IP watchdog function in the “Power

Strip”. It periodically sends the ICMP ping packets to the rack PC, and if it does not receive any response for three minutes,



Figure 3. Structure of the detector protection system.

it switches off the power to the appropriate mains socket. (In fact, as this function of the “Power Strip” was designed to

restart the server, it attempts to power-cycle the connected device three times, before switching it off permanently.)

Some external monitoring devices required special handling. E.g. one third party weather station sometimes refused

TCP/IP connection, and it was necessary to query it for current values of environmental parameters a few times, before

considering it to be unavailable. Handling of such “difficult hardware” was significantly simplified with the use of Python’s

object features. For those sensors special server classes were created, which separated updating of the current values from

reading of the last received values. The thread which must rely on current values (like DPS) could use the “update”

function which attempts to obtain the current values, which may take some significant time. This function also stores the

last received values. If it is not possible to receive the current values within a predefined time, the last received values are

marked as unavailable. Another thread which should not execute such time consuming actions (e.g. the thread responsible

for data acquisition after the plasma pulse), may quickly read the last received parameters using the “read” function.

3.3 CODAS communication framework

Communication with the CODAS system is based on the HTTP protocol for interfacing to JET plant equipment.14 One of

the implementations of this protocol is the “jetblack” framework, written by Collin Hogben. This part of the system has

been implemented with an event driven programming paradigm.

The implementation in the device server is based on the “jetpc” sources provided by the creators of the “jetblack”

framework. The L3 class implements methods used to handle requests received from CODAS via HTTP protocol.

Dedicated methods of this class implement setting of setup parameters, used to control the KX1 diagnostic, and reading

of state variables, describing the current state of the system. Setting of parameters is usually done by the operator, via a

dedicated “CODAS Level 1 interface”. The set parameters’ values are also stored in the file on the local disk, allowing

settings to be recovered after restart of the device server.

Other requests sent by CODAS change the state of the device server, e.g. requesting it to prepare to measure the plasma

pulse, or requesting it to read the measured data from the embedded servers and to store them to local files.

Some requests sent by CODAS require more time and must be handled in a procedural way. In this case a dedicated

thread is started to perform such an action, and CODAS later queries the device server for information on whether such a

thread has completed its activity, and what the status of the operation is.



It is important, that certain actions requested by CODAS have high priority, e.g. preparation of the system for mea-

surement of the plasma pulse must be performed immediately, or the data may be lost. If hardware resources needed for

measurement are used by another thread, e.g. the one performing the monitoring measurement, its activity must be aborted

to free those resources. This requirement creates some problems, which are described in more detail way in Section 5.1.

The CODAS communication framework also allows predefined actions to be triggered in the device server:

• Switching on and off of the “electronics boxes” containing the embedded server, and the FPGA based systems

• Switching on and off of the low voltage power supply for the analog front-end

• Switching on and off of the high voltage for the GEM detector (the HV values should be set in advance, using the

setup parameters)

During the development of the device server, it was often necessary to redefine the format of binary data. This problem

could be easily solved by defining dedicated “DataWriter” classes, which converted the data from the internal representation

to the required external representation and wrote them to an output node.

3.4 Data Acquisition thread

The measurement and data acquisition is a relatively long process, as it may involve setting of a new configuration of the

data acquisition electronics, waiting for the trigger (in the case of a plasma pulse measurement), and reading of the acquired

data from the FPGA. Therefore the data acquisition has been implemented in a separate thread, which can be started either

by the monitoring thread (and is then executed with low priority to acquire the calibration data from the 55Fe source), or by

the CODAS communication framework (and is then executed with high priority to measure the radiation originating from

the plasma).

The data acquisition is performed in tight cooperation with the embedded server. Commands, responses to the com-

mands, and data are transmitted between the device server and the embedded server using a specially developed protocol

based on the msgpack17 library.

3.5 Configuration server

An important functionality of the device server is handling of configuration data. These data describe configuration of the

embedded server, of the FPGA based electronics and of the analog front end, and they shape the metrological characteristics

of the whole system. The system configuration is stored in a textual, human readable format, compatible with the Python

“ConfigParser”18 module.

The configuration data are prepared in Matlab, and three different presets may be defined, which can later be selected

using the “setup parameters”.

Certain parts of the configuration data may be redefined dynamically during the operation of the system, due to the

operation of the “automatic gain control” (AGC) process (described in the section 4.1).

The system may receive the new configuration data at any time, but it should not disturb an ongoing measurement.

Therefore the configuration server keeps the previous configuration until the new one is fully received and verified. When

a measurement is started (either by a monitoring thread or by a CODAS request), a snapshot of the current configuration is

taken and is used until the measurement is completed.

Due to the fact that hardware reconfiguration is time consuming, the configuration server detects whether the new

configuration differs from the previously used one, and reconfigures the hardware only if necessary.

4. ADDITIONAL PROCESSES RUNNING OUTSIDE OF THE DEVICE SERVER

The multithreading approach implemented in the threading15 module works correctly for threads which spend a significant

amount of time waiting for completion of an I/O operation. However, in case of tasks involving complex data processing,

this approach is not efficient, due to the use of the so called Python “Global Interpreter Lock”.19

Therefore such tasks have been implemented as separate processes. An additional advantage of such an approach is

that those computational tasks do not affect the stability of the device server (e.g. in the case that erroneous data cause the

crash of the processing task, and the task must be restarted).



Figure 4. Energy spectrum of the 55Fe source radiation (plotted here as charge collected by the detector, which is proportional to X-ray

energy). Known position of the highest peak (at 5.9 keV) may be used to calculate current gain of the detector.

4.1 Automatic gain control process

The first of those external computational tasks is the Automatic Gain Control (AGC) process, which uses the calibration

data obtained from the measurement of the radiation of the 55Fe source. Thanks to the known energy spectrum of this

radiation (see Figure 4), it is possible to calculate the current gain of the detector, and to include the calculated value in the

system configuration data, so that variations of the detector’s gain may be compensated when processing the data acquired

from the plasma pulse.

The AGC process uses the Python NumPy module,20 to calculate the weighted average of charge corresponding to the

energy of the peak.

4.2 Process for separation of orders of reflection

In the Bragg spectrometer the relationship between the energy and angle of reflection is not univocal. The reflection angle

Θ fulfills Bragg’s law: nλ = 2dsinΘ, where λ is the wavelength, d is the distance between the atomic layers in the crystal

and the integer n is the order of reflection.

So the same angle of reflection may correspond to different wavelengths, and hence different energies, depending on

the "order of reflection". An important characteristics of the upgraded KX1 diagnostic is the use of the GEM detector in

proportional mode, which allows measurement of a photon’s energy based not only on the angle of reflection but also on

the charge produced by that photon in the GEM detector. However, due to the fact that the gain of the detector may vary

even during a plasma pulse, it is difficult to set fixed borders between different orders of reflection. Therefore the order

separation thread analyses the histograms recorded for different strips (i.e. for different reflection angles) and attempts to

find the local minima, which are supposed to best separate hits corresponding to different orders of reflection (see Figure 5).

This code for order separation uses the algorithm for finding of local minimum, implemented in the Python NumPy

module.

5. ADVANTAGES AND DISADVANTAGES OF PYTHON BASED IMPLEMENTATION

Implementation of the system using the Python language allowed use of multiple mature and efficient solutions for network

communication, especially for implementation of the TCP/IP servers and their clients, for handling of configuration data

and for measurement data processing.



Figure 5. Estimation of borders separating different orders of reflection on the energy (charge) axis. It can be seen that the large increase

in rate of hits, changes the detector’s gain and causes a shift of the separation borders.

The object features of Python allowed creation of an object based layer for hardware management, which simplified

development of the device server, which handles two similar, but not identical detectors in parallel. This approach was also

very fruitful in implementation of the detector protection system, where different sensors could be handled in a similar way

due to the object based abstraction layer.

The implementation of the device server also intensively uses the Python advanced exception handling. Exceptions

are used both to signal problems and cleanly abort failed operations. They were also used to implement aborting of lower

priority threads, which is described in the next subsection.

The device server uses multiple threads based on multithreading support provided by Python. As most threads spend

significant time waiting for a command received via the network, or for completion of an I/O operation, the model of

parallel execution provided by threading15 module is suitable, however it lacks one significant functionality, described in

the next subsection.

5.1 Implementation of prioritized threads in Python

As described in previous sections, operation of the device server sometimes requires that lower priority activity should be

aborted, to allow execution of other, higher priority task. Different activities are performed by different threads, so the

natural solution would be to kill the lower priority thread in such a situation, or better, to raise an exception in this thread

(which could allow aborting its activity cleanly by the exception handler). Unfortunately the threading15 module used

in the device server does not allow one thread to raise an exception in another thread. An unofficial extension21 exists

that implements this feature, but it is not supported and does not work reliably in all versions of Python. Another possi-

bility could be to use the multiprocessing22 module, which implements parallel processing based on multiple processes.

This implementation allows the “terminate” function to be called on a child thread, allowing it to be aborted, but it is

impossible to implement the handler, allowing the aborted thread to terminate cleanly. The multiprocessing module makes

communication between threads significantly more difficult, as processes do not share variables.

Therefore in the final version of the device server a model of cooperative thread termination has been implemented. In

the object describing the state of the particular detector there is a special variable AbortLevel containing the priority of the

lowest priority thread which is allowed to run. Each thread, when performing any time consuming operation, is obliged to

periodically call the CheckAbortRequest function. This function checks if the priority of the current thread is lower than

AbortLevel, and in such case raises the corresponding exception.

With such an approach it is possible to implement clean termination of lower priority threads, however to achieve low

latency of termination, it is necessary to carefully implement threads so that the time period between consecutive calls to

CheckAbortRequest is not too long.



5.2 Problems related to the interpreted character of Python

Python is an interpreted language, and this feature was very convenient during development and debugging, as it allowed us

to work interactively with the developed system. However, the result is that some errors (e.g. mistyped names of variables

or functions) are detected only at runtime, when the affected line of code is executed. That means, that rarely executed

blocks of code may contain errors which will not be detected during testing. This may be especially dangerous when those

rarely executed procedures handle emergency situations (which may also be difficult to testing without creating a risk to

the system). To avoid this problem it is recommended to use tools, which assess the Python code quality, particularly trying

to detect undefined functions and variables (e.g. the pylint23).

5.3 Problems related to Python syntax

Another problem faced during development was related to the fact, that Python uses only indentation to specify program

blocks (instead of “begin-end” or curly braces). When the Python source code was edited in an editor with tabs set to be

equivalent to 4 spaces, and which tried to automatically optimize the indentation by replacing spaces with tabs, it resulted

in serious corruption of the source. To avoid this problem it is definitely preferable to switch off use of tabs in the editor.

Starting of the Python interpreter with the “-tt” option may also help detect a problem with mixed spaces and tabs in the

source code.

6. CONCLUSIONS

The presented system solves the problem of integration of the electronics systems supporting the GEM detectors on the

KX1 X-ray diagnostic with the Control and Data Acquisition System (CODAS) at the JET facility.

The implementation is done almost solely in Python language, and may be an example of successful application of

Python for control and data acquisition systems. Availability of a broad set of libraries (modules) allowed efficiently

handling of such tasks as communication via HTTP protocol, implementation of TCP/IP servers and clients and commu-

nication with hardware with handling of exceptions.

Use of Python allowed for fast prototyping and convenient interactive testing in the development stage.

Some disadvantages of Python have been also exposed. Its threading model does not support native implementation of

threads with different priorities, and it was necessary to implement a special “cooperative” model of a thread’s preemption.

The runtime only detection of undeclared variables and functions creates a risk that some errors (mistyped variable or

function) in rarely executed procedures may not be detected in development. Therefore additional code analysis tools

should be used especially in mission critical applications.
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