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ABSTRACT

This paper describes the design of the Link Box Control System for the RPC Detector (RLBCS), emphasizing the features
needed to assure reliable operation in the irradiated environment of the RPC detector and its neighbourhood. The develop-
ment process required to balance different factors - radiation hardness, reliability, flexibility, firmware upgrade possibilities,
diagnostic features. The final design presented in the paper is a result of compromise between the above requirements.
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1. INTRODUCTION

The RPC muon trigger is one of components of the level one trigger in the CMS detector in LHC experiment in CERN.2

The electrical signals from the Resistive Plate Chambers (RPC) (Fig. 1) are received by the Link Boards (LBs). The
Link System FPGA chips, located on the LBs, synchronise these signals, compress them and send via the high speed
unidirectional optical link to the CMS counting room for further processing.3

However the correct operation of the Link System requires also a relatively slow bidirectional channel, needed for
sending of control commands, operation parameters, and for reading the diagnostic data from the Link System.

This bidirectional channel is provided by the RPC Link Box Control System (RLBCS).4 The RLBCS uses the redun-
dant serial link based on CCU25 chips.5 Each CCU25 chip is located on a dedicated Control Board (CB), which provides
communication for maximally 9 LBs, using a specially developed Control Bus (CBus). Each CB contains also some addi-
tional FPGA chips, needed to interface CCU25 to the CBus and to implement some additional functionalities, which will
be described later.

The complete system will contain 248 Control Boards (192 in the first stage), and 1808 Link Boards (1232 in the first
stage).6 Therefore the price of single CB and LB is a significant factor to be considered when designing the RLBCS.

Another requirement was to assure the reasonable flexibility of the design. It should be possible to configure most
FPGAs with the special diagnostic versions of the IP cores. On the other hand the configuration of the SRAM based FPGAs
with standard cores should be as fast as possible to assure fast start of the system after the power up (this requirement is even
more important, as the system requires periodical reconfiguration of the SRAM based FPGAs due to reliability reasons,
which will be described later). The possibility of firmware upgrade in the working system is also desirable.

The design of RLBCS must also consider fact, that LBs and CBs work in the irradiated neighbourhood of the CMS
detector, so special radiation hard or at least radiation tolerant solutions are required to provide reliable operation.

These main concerns: radiation hardness or tolerance, reliability, flexibility and low cost lead to contradictory require-
ments. Therefore the final design is a result of compromise between all of them.

Further author information: (Send correspondence to W.M.Zabolotny)
W.M.Zabolotny: E-mail: wzab@ise.pw.edu.pl, Telephone: +48 (22) 660 7717



Figure 1. The view of CMS detector.1 The “Muon Detectors” contain Resistive Plate Chambers (RPC).

2. RADIATION RELATED REQUIREMENTS FOR RLBCS ARCHITECTURE

The Link System and RLBCS will be located in the environment irradiated with thermal neutrons and high energy hadrons.7

This conditions may lead to SEU effects in electronic systems. If the reliability was the only factor taken into consideration,
both systems should be built using the radiation hard programmable chips (eg. the RT54SX family manufactured by
Actel8), using the Triple Modular Redundancy (TMR) or even Functional Triple Modular Redundancy (FTMR) approach.9

However such solution is not acceptable, because of many reasons:

• There are no radiation hard chips of complexity sufficient for the Link System

• The radiation hard chips are very expensive, and their use would render the price of Link System and RLBCS
unacceptably high

• The radiation hard chips use antifuse based technology, which does not allow reprogramming of the chip. If such
chips were used, it would not be possible do download diagnostic IP cores or to upgrade the firmware.

The analysis of SEU sensitivity of electronic components, performed in Ref. 10 leads to conclusion, that the SRAM
configured FPGA chips may be used in such conditions, but periodic reconfiguration is required.

Therefore the RLBCS should be able not only to configure the Link System’s FPGA chips after the power up, but
also to reconfigure them periodically. However configuration of SRAM based FPGAs requires the significant amount
of data. In the last version of the Link System the Xilinx XC3S1000FG456-5 chips are used. Each of them requires
3,223,488 bits (402936 bytes) of configuration data.11 These data must be either transferred to the LB each time, when
the chips are reconfigured, or must be stored locally. Unfortunately throughput of the CCU25 based communication links,
connecting the RLBCS with the rest of the system, is too low to allow for retransmission of configuration data. Therefore
the configuration data must be stored locally.

Storing of such amount of data in a safe way in the irradiated environment may be also a difficult task. The tests
described in Ref. 10 included testing of the SDRAM memory chips and FLASH memory chips. These tests have shown,
that using the FLASH memory assures sufficient reliability, especially when supplemented with the ECC technology. Such
solution additionally assures that configuration data do not have to be reloaded after each power down of the system.

However efficient programming of the FLASH memories with data sent via relatively slow CCU25 link requires in-
telligent FLASH controller with buffering capabilities. Therefore relatively complex SRAM based FPGA chips are also
required for RLBCS system. The final design of RLBCS system resulting from the above requirements is shown in the
Fig. 2. The RLBCS contains single SRAM based FPGA on each Link Board. This is so called Link Board Controller
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Figure 2. The final radiation tolerant architecture of the RLBCS system.4

(LBC), responsible for interfacing between the CBus and the LB’s Internal Interface bus (II), for reconfiguration of the
Link System FPGA, and for control of the local FLASH memory.

Each CB contains Control Board Programmable Controller - responsible for interfacing between the CCU25 chip and
the CBus, for control of the local FLASH memory, and for some additional functionalities (eg. I2C interface). This is a
relatively complex chip, which must also be implemented in the SRAM based FPGA.

The next important component is the Control Board Initialization Controller (CBIC), which is responsible for recon-
figuration of CBPC and LBC, using the data stored in the local FLASH memory. If during reconfiguration the CB FLASH
memory does not contain valid data, CBIC enters the emergency mode, where configuration data are sent directly via
the CCU25 link. Similarly if the LB FLASH memory does not contain the valid configuration data, the LBC enters the
emergency mode, where the configuration data are sent via the CCU25 link and the CBus.

The CBIC is relatively simple, and can be implemented in a radiation tolerant technology. The last version of design
uses the Actel’s FLASH based ProAsicPlus12 FPGA as CBIC. The radiation tests13 has shown, that these chips should not
loose their configuration due to radiation during the operational life of the detector.

3. RADIATION TOLERANT IMPLEMENTATION TECHNIQUES

The radiation tolerance of the described RLBCS architecture has been further supported with some implementation fea-
tures. These include protection of the configuration data stored in the FLASH memories and protection of the internal logic
of FPGA chips.

3.1. Radiation protection of the configuration data

Special measures have been taken to protect the configuration data stored in the FLASH memories. The radiation tests
described in Ref. 10 have shown, that radiation induced data errors in FLASH are mainly changes of data bits from “0”
to “1”. To reliably detect such data corruptions, a simple checksum, defined as “number of zeroes in the data word” may
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Figure 3. Basic implementation of the triple redundant flipflop.

be used. The configuration memory works with 32-bit long data words, where 27 bits store configuration data and 5 bits
store the checksum. Additionally each three data words are supplemented with the parity word (also checksum protected).
If only a single word in such 4 word block is corrupted, it is possible to recover it from the remaining data words and the
parity word.

Another level of protection is assured by the fact that the configuration memory is able to store two sets of configuration
data. If one set is found corrupted and unusable, it is possible to switch to the second one. The corrupted set may be
refreshed, while the second one is used for the reconfiguration of chips.

To allow early detection of the configuration data corruption, the CBPC and LBC chips scan the contents of the FLASH
memory, and notify the managing computer system if either the recoverable or unrecoverable data corruption is found.

The described mechanisms should minimize the probability of situation, when RLBCS or Link System SRAM based
FPGAs can not be reconfigured due to corruption of configuration data.

3.2. Protection of internal logic in RLBCS FPGAs

The RLBCS chips store some internal data (eg. current states of the state machines, contents of the control registers, coun-
ters etc.) which are very important for the correct operation of the system. To protect this information against the radiation
induced corruption, the triple redundant logic should be used. The ideal solution would be to use the Functional Triple
Modular Redundancy (FTMR), described in Ref. 9 with both combinational and sequential logic triplicated. However this
approach causes some portability problems related to different logic synthesis tools, and therefore another solutions were
developed. Because the triplication of combinational logic leads to high increase of resources consumption in the FPGA,
only the sequential logic has been triplicated.

The basic triplicated flipflop with voting circuit is shown in the figure 3. Using of redundant logic inside of FPGA
chips is a fight against the optimization algorithms used by synthesis tools. It is difficult to protect the elements assuring
redundancy, while allowing to perform other advantageous optimizations. Some synthesis tools use special attributes to
keep some signals during the optimization, however their use is non portable and may result in preserving of not used
signals, which increases consumption of resources.

In the RLBCS a portable protection of redundancy against optimization has been used, achieved by using three separate
reset lines, which are tied together outside the chip. The basic implementation of redundant flipflop using this technique has
been shown in the Fig. 3. The real implementation used in the RLBCS FPGAs is a little different. To avoid problems when
rising slope of reset signals occurs near to the active clock slope, the synchronous resets have been used. The final VHDL
implementation of the basic triple redundant flipflop is shown in the Fig. 4. Additionally dedicated VHDL components
have been created to implement the registers storing multibit words and integer values in such TMR flipflops.

However usage of such redundant components affects the VHDL description of the system. The typical behavioral
VHDL description heavily relies on the automatic inferring of flipflops. This is not possible when using TMR flipflops,



entity tripsig is
port (

input : in std_logic; -- input signal
output : out std_logic; -- output signal
init : std_logic; -- initial state after reset
a_rst : in std_logic; -- asynchronous reset
r_rst : in std_logic_vector(2 downto 0); -- synchronous resets
clk : in std_logic -- clock
);

end tripsig;

architecture tripsig1 of tripsig is

type my_data is array(2 downto 0) of std_logic;
signal d : my_data; -- flipflops storing the data

begin -- trip1
output <= (d(2) and d(1)) or (d(1) and d(0)) or (d(2) and d(0));

g2: for j1 in 2 downto 0 generate
process (clk, a_rst,init)
begin

if a_rst = ’0’ then -- asynchronous reset (active low)
d(j1) <= init;

elsif clk’event and clk = ’1’ then -- rising clock edge
if rst(j1) = ’0’ then -- synchronous reset (active low)

d(j1) <= init;
else -- normal operation

d(j1) <= input;
end if;

end if;
end process;

end generate g2;
end tripsig1;

Figure 4. The VHDL implementation of simple redundant flipflop

unless the synthesis tool supports triple redundant logic.14 To obtain portable solution, all state machines in the RLBCS
system had to be implemented using the combinational processes with external registers. An example implementation of
the redundant state machine is shown in the Fig. 5.

Another problem associated with the use of TMR components is the implementation of asynchronously writable regis-
ters (usually implemented as latches). They are used to store information transferred from the external asynchronous bus.
A possible redundant implementation of such asynchronously writable fliplop is shown in the Fig. 6. Such implementation
allows for refreshing of flipflop contents after each system clock pulse. Unfortunately, such structure may not be efficiently
synthesized in all used FPGA chips. For example in Actel chips such component is synthesised using the flipflops created
from gates, which affects both resources consumption and speed of the design.

To avoid such problems standard TMR flipflop (as shown in the Fig. 3), with write strobe connected to the clock input,
has been used to implement asynchronously writable registers.

This technique allows for convenient implementation of asynchronously writable registers in a sequential processes, as
shown in the Fig. 7. The redundancy is achieved using a simple for–generate loop, and again separate reset lines are used
to protect redundant flipflops against optimization. In this implementation it is possible to use the automatic inferring of
flipflops, and the resulting code is both efficient and readable.

The disadvantage of this implementation, resulting from limitations of the VHDL language, is that for every size of the
register it is necessary to declare another type (as it is impossible to declare a type “type TSLVR is array(2 downto 0) of
std logic vector(natural range <>)”). This problem was solved by writing a simple bash script automatically generating a
VHDL package file with all necessary type declarations.

Certainly in the above implementation the contents of flipflops is not refreshed automatically, and it is necessary to
rewrite them periodically to avoid accumulation of radiation induced errors. In the case of SRAM based FPGAs this is
not a problem, because anyway after periodic reconfiguration contents of all registers must be reinitialized. In the FLASH
based CBIC FPGA it is necessary to periodically rewrite all the registers.



-- Signal in1 is of type std_logic, should be synchronized with clk
-- States ST_IDLE, ST_1, ST_2, ST_3, ST_4 are integer constants
-- Signal declarations
signal s_state_i, s_state_o, s_state_ini : integer;
signal s_rout1_i, s_rout1_o, s_rout1_ini : std_logic_vector (1 downto 0);
signal out2 : std_logic;
[ ... ]
-- Instantiation of the state register
st1 : tripstate

generic map ( width => 3 )
port map (

input => s_state_i, output => s_state_o, init => s_state_ini,
arst => a_reset, rst => r_reset, clk => clk);

s_state_ini <= ST_IDLE;

-- Instantiation of the registered output
rout1 : tripreg

generic map (width => 2 )
port map (

input => s_rout1_i, output => s_rout1_o, init => s_rout1_ini,
arst => a_reset, rst => r_reset, clk => clk);

s_rout_ini <= (others -> ’0’);
[ ... ]
-- Process for determination of state changes and outputs
s1: process(s_state_o, s_rout1_o, in1)

begin
-- default assignments to avoid latches on non-registred signals
out2 <= ’0’;
-- the redundant registers are looped-back by default
s_state_i <= s_state_o;
s_rout1_i <= s_rout1_o;
-- synchronous reset
if not a_reset then

if s_state_o = ST_IDLE then
if in1=’1’ then

s_state_i <= ST_1; s_rout1_i <= "10"; out2 <= ’1’;
end if;

elsif s_state_o = ST_1 then
s_rout_1 <= "10"; s_state_i <= ST_2;

elsif s_state_o = ST_2 then
s_state_i <= ST_3; out <= ’1’;

elsif s_state_o = ST_3 then
s_state_i <= ST_3;

elsif s_state_o = ST_4 then
s_rout_1 <= "00"; s_state_i <= ST_IDLE;

end if;
end if;

end process bs1;

Figure 5. The VHDL code implementing the redundant state machine
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Figure 6. Extended triple redundant register with asynchronous write.



-- Types and function declarations in the package
type TSLVR4 is array(2 downto 0) of std_logic_vector(3 downto 0);
function r_vote (constant din : TSLVR4)

return std_logic_vector;

type TSLVR8 is array(2 downto 0) of std_logic_vector(7 downto 0);
function r_vote (constant din : TSLVR8)

return std_logic_vector;

-- Sample body of the r_vote function in the package
function r_vote ( constant din : TSLVR8)

return std_logic_vector is
variable result : std_logic_vector(7 downto 0);
begin -- wz_vote

for i in result’range loop
result(i) := ( din(0)(i) and din(1)(i) ) or

( din(2)(i) and din(1)(i) ) or
( din(0)(i) and din(2)(i) );

end loop; -- i
return result;

end wz_vote;

--Signals declarations
signal reg1_r : TSLVR4; -- redundant 4-bit register
signal reg1 : std_logic_vector(3 downto 0);
signal reg2_r : TSLVR8; -- redundant 8-bit register
signal reg2 : std_logic_vector(7 downto 0);
signal s_nWR : std_logic; -- write strobe
signal s_nRESET : std_logic_vector(2 downto 0); -- reset signals
signal s_data : std_logic_vector(7 downto 0); -- data bus

--Processes implementing the real write access
gwr1 : for i in 0 to 2 generate

bus1 : process (s_nCS, s_nRESET)
begin -- process bus1
if s_nRESET(i) = ’0’ then

-- reset registers - this protects against
-- optimizing them out
reg1_r(i) <= (others => ’0’);
reg2_r(i) <= (others => ’0’);

elsif elsif s_nCS’event and s_nCS = ’1’ then
-- rising edge of Chip Select signal
if s_nWR = ’0’ then

-- write access
case s_address is

when ADDR_REG1 =>
reg1_r(i) <= s_data(3 downto 0);

when ADDR_REG2 =>
reg2_r(i) <= s_data;

when others => null;
end case;

end if;
end if;

end process bus1;
end generate gwr1;

--Conversion of redundant signals into standard ones
reg1 <= r_vote(reg1_r);
reg2 <= r_vote(reg2_r);

Figure 7. The VHDL code implementing the redundant register writable from external bus



4. CONCLUSIONS

The presented design of RLBCS assures protection against the radiation induced errors, while keeping the costs at reason-
able level. The protection is achieved by periodical reconfiguration of SRAM based FPGAs with the configuration data
stored locally in the FLASH memory.

The configuration data are protected using the ECC technique, which allows to detect data corruption when the data are
still usable. Two sets of the configuration data may be stored in the FLASH memory, so another set may be used when the
first one requires refreshing. The contents of FLASH memory is continuously checked to detect data corruption as early as
possible and to request reloading of corrupted FLASH area.

The sequential logic in the RLBCS FPGA is protected using the TMR flipflops to minimize the probability of corruption
of data stored in the internal registers.

Implementation of fundamental functionalities in the FLASH based radiation tolerant FPGAs (CBIC) assures fast
startup of the system after power up or after periodical reconfiguration, while implementation of more complicated func-
tionalities in the SRAM based FPGAs provides low cost, high flexibility, good diagnostic capabilities and possibility of
firmware upgrades.
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